摘要
The interacting boson model with isospin (IBM-3) is applied to study the band structure and electromagnetic transition properties of the low-lying states in the cross-conjugate nuclei 44Ti and S2Fe. The isospin excitation states with T=0, 1 and 2 are identified and compared with available data. The E2 and M1 matrix elements for the low-lying states have been investigated. According to this study, the 2+3 state is the lowest mixed symmetry state in the cross-conjugate nuclei 44Ti and 52Fe. The excitation energy of the second 0+2 and 2+2 states with T=0 in the nucleus 52Fe are identified. The agreement between the model calculations and data is reasonably good.
The interacting boson model with isospin (IBM-3) is applied to study the band structure and electromagnetic transition properties of the low-lying states in the cross-conjugate nuclei 44Ti and S2Fe. The isospin excitation states with T=0, 1 and 2 are identified and compared with available data. The E2 and M1 matrix elements for the low-lying states have been investigated. According to this study, the 2+3 state is the lowest mixed symmetry state in the cross-conjugate nuclei 44Ti and 52Fe. The excitation energy of the second 0+2 and 2+2 states with T=0 in the nucleus 52Fe are identified. The agreement between the model calculations and data is reasonably good.
基金
Supported by National Natural Science Foundation (10265001, 10765001)
Inner Mongolian Nation Natural Science Foundation (200607010111)