期刊文献+

基于决策树的海上搜救目标检测算法 被引量:5

Marine rescue target detection algorithm based on decision tree
下载PDF
导出
摘要 为克服传统目标识别方法在处理空间特征分布极为复杂的数据时的缺点,提出1种基于决策树的多特征检测算法,并将其应用到基于视频的海上搜救目标检测中.该算法首先提取图像中的颜色、亮度等信息,通过计算各特征的信息增益建立决策树,将搜救目标检测问题分解成3层决策树分类问题.实验表明,该算法能够提高多特征目标检测的效率,在救生艇、筏等海上搜救目标检测的应用中取得较好的结果. In order to overcome the shortcomings of the traditional target recognition method in dealing with the data of highly complex spatial characteristics distribution,a multi-feature detection algorithm based on decision tree theory is proposed and applied to the marine rescue target detection based on video.In the algorithm,color,intensity and other information of the images are extracted firstly,then the deci-sion tree is built by calculating the information gain of each feature,thus the detection of the rescue target is transformed into the classification process of three-layer decision tree.Experiments indicate that the al-gorithm can improve the efficiency of multi-feature target detection,and it works well in the rescue target detection such as lifeboat and life raft.
作者 陈鹏鹏 冉鑫
出处 《上海海事大学学报》 北大核心 2010年第3期1-4,共4页 Journal of Shanghai Maritime University
基金 国家高技术研究发展计划("八六三"计划)(2007AA11Z249) 上海市自然科学基金(08ZR1409300) 上海市重点学科建设项目(S30602) 上海市教育委员会支出预算项目(2008083)
关键词 目标检测 决策树 特征提取 图像处理 target detection decision tree feature extraction image processing
  • 相关文献

参考文献7

  • 1UTGOFF P E,BERKMAN N C,CLOUSE J A.Decision tree induction based on efficient tree restructuring[J].Machine Learning,1997,29(1):5-44.
  • 2RAN Xin,ZHANG Yongxin.Incremental tree induction for detection of the rescue target in the marine casualty[C] // Proc 2009 WRI Global Congress on Intelligent Systems,Washington,DC,USA:IEEE Computer Society,2009(4):432-435.
  • 3QUINLAN J R.Induction of decision tree[J].Machine Learning,1986,1(1):81-106.
  • 4GONZALEZ R C,WOOD R E. 数字图像处理[M].2 版. 北京: 电子工业出版社,2007:175.
  • 5张建恩,曹长修,金琼.图像处理中的圆分析算法[J].重庆大学学报(自然科学版),2005,28(11):43-45. 被引量:15
  • 6ROSIN P L.Measuring shape:ellipticity,rectangularity,and triangularity[J].Machine Vision & Applications,2003,14(3):172-184.
  • 7QUINLAN J R.C4.5:programs for machine learning[M].San Mateo,CA:Morgan Kaufmann,1993:170-227.

二级参考文献4

共引文献43

同被引文献56

引证文献5

二级引证文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部