期刊文献+

一种仿人机器人臂的重力补偿研究 被引量:9

Experimental Research on Gravity Compensation for Humanoid Robot Arm
下载PDF
导出
摘要 为了对7自由度握手机器人臂进行重力补偿,提出了基于最小二乘法的机器人臂动力学参数识别方法。首先,推导了该机器人臂各关节转矩的重力项理论计算公式;其次,对基于最小二乘法原理的参数识别方法进行详细分析;最后,利用该方法对机器人臂各连杆进行了参数识别试验。试验表明:依靠该方法进行参数识别后的重力项计算值和实测值基本上是一致的,能够用于机器人臂的重力补偿计算。 In order to make gravity compensation,a dynamics parameter identification based on least square method is proposed and applied to 7 DOF handshaking robot arm. Firstly,computational formula in theory is deduced on each of joint torque for the robot arm. Secondly,parameter identification based on least square method is analyzed in details. Lastly,parameter identification experiments on every link of robot arm are carried out by making use of it. Experiment results show that calculation value after using the parameter identification method is basically coincident with measured value,and it can be used to make gravity compensation for robot arm.
出处 《机械传动》 CSCD 北大核心 2010年第7期26-28,共3页 Journal of Mechanical Transmission
关键词 机器人臂 最小二乘法 参数识别 重力补偿 Robot arm Least square method Parameter identification Gravity compensation
  • 相关文献

参考文献4

  • 1Hashimoto M,Hattori T,Horiuchi M.Development of a torque sensing robot arm for interactive communication[C]//Proceedings of the IEEE Interanational Conference on Robot and Human Interactive Communication,September 25-27 2002,Berlin.German:IEEE,2002:344-349.
  • 2谢光辉,梁锡昌,桥本稔,吕宏展.基于矢量场在线更新的人和机器人身体交流控制[J].机器人,2009,31(5):421-426. 被引量:2
  • 3白井良明 王棣堂译.机器人工程[M].北京:科学出版社,2001.11-13.
  • 4蔡自兴.机器人学[M].北京:电子工业出版社,2004:13-16.

二级参考文献8

  • 1Ikeura R, Inooka H. Variable impedance control of a robot for cooperation with a human[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 1995: 3097-3102.
  • 2Hirata Y, Takagi T, Kosuge K, et al. Motion control of multiple DR Helpers transporting a single object in cooperation with a human based on map information[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2002: 995-1000.
  • 3Taga G. A model of the neuro-musculo-skeletal system for human locomotion .2. Real-time adaptability under various constraints[J]. Biological Cybernetics, 1995, 73(2): 113-121.
  • 4Kotosaka S, Schaal S. Synchronized robot drumming by neural oscillators[J]. Journal of the Robotics Society of Japan, 2001, 19(1): 116-123.
  • 5Okada M, Tatani K, Nakamura Y. Polynomial design of the nonlinear dynamics for the brain-like information processing of whole body motion[C]//Proceedings of the IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2002: 1410-1415.
  • 6Hashimoto M, Hattori T, Horiuchi M, et al. Development of a torque sensing robot arm for interactive communication[C]//Proceedings of the IEEE International Workshop on Robot and Human Interactive Communication. Piscataway, NJ, USA: IEEE, 2002: 344-349.
  • 7Hashimoto M, Kasuga T, Horiuchi M. Development of a joint torque sensing robot ann for human-robot physical interactions[C]// Proceedings of the 6th Japan-France Congress on Mechatronics and 4th Asia-Europe Congress on Mechatronics. Saitama, Japan: JFMC, 2003: 163-168.
  • 8谢光辉,梁锡昌,桥本稔,张霞,李伟.基于同步控制的人和机器人握手动力学仿真[J].机器人,2008,30(5):428-434. 被引量:5

共引文献17

同被引文献75

引证文献9

二级引证文献65

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部