期刊文献+

基于滑动窗口的数据流最大频繁项集的挖掘

Mining maximal frequent itemsets in a sliding window over data streams
下载PDF
导出
摘要 鉴于频繁项集存在数据和模式冗余的问题,挖掘数据流最大频繁项集的算法引起了极大的关注,本文提出了一种挖掘数据流滑动窗口内最大频繁项集算法——MMFI-SW算法。该算法首先使用类似FP-tree的数据结构记录最新到达的数据流信息,同时删除过时的数据和大量的不频繁项目,然后设计一个创新的方法有效地从数据流滑动窗口中输出最大频繁项集。理论分析与实验结果表明,MMFI-SW算法具有较低的时间复杂度。 In consideration of the problem of data and pattern redundancy in frequent itemsets mining and the close attention to the study of mining maximal frequent itemsets from data streams, this paper presents the MMFI-SW algorithm for mining maximal frequent itemsets in a sliding window over data streams. Firstly, it uses a data structure based on FP-tree to record the current information in streams, at the same time, the obsolete items and a lot of infrequent items are deleted by pruning the tree. Then, it designs a novel method to mine the set of all maximal frequent itemsets in a sliding window over data streams. The theoretical analysis and the experimental results show that the proposed method is efficient.
出处 《高技术通讯》 EI CAS CSCD 北大核心 2010年第11期1142-1148,共7页 Chinese High Technology Letters
基金 国家自然科学基金(60873082)资助项目
关键词 数据挖掘 数据流 滑动窗口 频繁项集 最大频繁项集 data mining, data stream, sliding window, frequent itemsets, maximal frequent itemsets
  • 相关文献

参考文献12

  • 1Li H F,Lee S Y.Online mining (recently) maximal frequent itemsets over data streams.In:Proceedings of the 15th International Workshop on Research Issues in Data Engineering:Stream Data Mining and Application,Tokyo,Japan,2005.11-18.
  • 2Agrawal R,Srikant R.Fast algorithms for mining association rules.In:Proceedings of the 20th International Conference on Very Large Data Bases,Santiago,Chile,1994.487-499.
  • 3Yu J,Chong Z,Zhang H.A false negative approach to mining frequent itemsets from high speed transaetional data streams.Information Sciences,2006,176(14):1986-2015.
  • 4Mao G J,Wu X D,Liu C N.Onling mining of maximal frequent itemsequences from data streams.Journal of Information Science,2007,33(3):251-262.
  • 5Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation.In:Proceedings of the ACM International Conference on Management of Data,Dallas,USA,2000.1-12.
  • 6Giannella G,Han J,Yu P.Mining frequent patterns in data streams at multiple time granularities.Data Mining:Next Generation Challenges and Future Directions.India:PHI Publisher,2004.191-212.
  • 7Ming Y L,Chen H S.Interactive mining of frequent patterns in a data stream of time-fading models.In:Proceedings of the 8th International Conference on Intelligent Systems Design and Applications,Kaohsiung,Taiwan,China,2008.513-518.
  • 8Chi Y,Wang H,Yu P.MOMENT:maintaining closed frequent itemsets over a data stream sliding window.In:Proceedings of the 2004 IEEE International Conference on Data Mining,Brighton,UK,2004.59-66.
  • 9Jiang N,Gruenwald.CFI-stream:mining closed frequent itemsets in data streams.In:Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,Philadelphia,USA,2006.592-597.
  • 10Ranganath B N,Murty M N.Stream-close:fast mining of closed frequent itemsets in high speed data streams.In:Proceeding of 2008 IEEE International Conference on Data Mining Workshops,Pisa,Italy,2008.516-525.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部