期刊文献+

时滞细胞神经网络部分状态脉冲镇定(英文) 被引量:2

Impulsive Stabilization of Delayed Cellular Neural Networks via Partial States
下载PDF
导出
摘要 研究了具有变时滞的细胞神经网络的部分状态脉冲镇定问题。利用细胞神经网络激活函数的分段线性性,应用分段可微的Lyapunov函数,并结合Razumikhin型分析技术,得到了部分状态脉冲控制律存在的充分条件。该充分条件表示为基于互联矩阵和脉冲区间界的线性矩阵不等式。应用上述结果,对一类时滞细胞神经网络,提出了一种新的脉冲镇定方案。该脉冲镇定方案仅需利用部分状态的输出信息。最后,给出了一个数值例子说明了此方案的有效性。 The problem of impulsive stabilization of delayed cellular neural networks (DCNNs) via partial states is discussed. The time delay is allowed to be time-varying. By utilizing the piecewise linear property of the activation function of DCNNs and applying piecewise differential Lyapunov combined with Razumikhin-type analysis techniques, a sufficient condition for the existence of the impulsive control law via partial states is derived. The sufficient condition is given in terms of linear matrix inequalities concerning the interconnection matrices and the bounds of the impulsive intervals. By using this result, an impulsive stabilization scheme for a class of DCNNs is proposed. The impulsive stabilization scheme only utilizes the output of partial states of the controlled DCNN. A numerical example illustrates the efficiency of the proposed method.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2010年第6期810-816,共7页 Journal of University of Electronic Science and Technology of China
基金 Supported by the National Natural Science Fund of China(60864002)~~
关键词 细胞神经网络 脉冲镇定 部分状态 变时滞 cellular neural networks impulsive stabilization partial states time-varying delay
  • 相关文献

参考文献15

  • 1BAINOV D D, SIMEONOV P S. Systems with impulse effect: stability, theory and applications[M]. Chichester: Ellis Horwood, 1989.
  • 2YANG T. Impulsive control[J]. IEEE Transactions on Automatic Control, 1999, 44(5): 1081-1083.
  • 3YANG T, CHUA L O. Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication[J]. IEEE Transactions on Circuits and Systems-Ⅰ. 1997, 44(10): 976-988.
  • 4LI Z G, WEN C Y, SOH Y C. Analysis and design of impulsive control systems[J]. IEEE Transactions on Automatic Control, 2001, 46(6): 894-897.
  • 5GUAN Z-H, HILL D J, SHEN X. On hybrid impulsive and switching systems and application to nonlinear control[J]. IEEE Transactions on Automatic Control, 2005, 50(7): 1058-1062.
  • 6YANG Z, XU D. Stability analysis and design of impulsive control systems with time delay[J]. 1EEE Transactions on Automatic Control, 2007, 52(8): 1448-1454.
  • 7CHEN W-H, WANG J-G, TANG Y-J, et al. Robust H∞ control of uncertain linear impulsive stochastic systems[J]. International Journal of Robust Nonlinear Control, 2008, 18(13): 1348-1371.
  • 8CHEN W-H, ZHENG W X. Robust stability and H ∞ control of uncertain systems with time-delay[J]. Automatica, 2009, 45(1): 109-117.
  • 9WANG Y-W, WEN C, XIAO J-W, et al. Impulsive synchronization of Chua's oscillators via a single variable[J]. Chaos, Solitons and Fractals, 2006, 29(1): 198-201.
  • 10CHEN W-H, LU X. Impulsive synchronization of chaotic Lur'e systems via partial states[J]. Physics Letter A, 2008, 372(23): 4210-4216.

同被引文献15

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部