期刊文献+

相空间法对混沌序列的自相关特性研究 被引量:5

Research on Chaotic Sequence Autocorrelation by Phase Space Method
下载PDF
导出
摘要 混沌序列已作为伪随机序列得到广泛应用,但如何判断混沌序列的相关特性、调制后相关特性的好坏,以及其理论依据,至今尚无定论,使其应用受到限制。该文给出了判断混沌序列自相关特性好坏的一个简单有效的方法。用相空间法对混沌序列的自相关特性作了研究,发现相空间轨迹是否具有轴对称性与其自相关函数好坏相对应,证明了相空间轨迹具有轴对称结构的序列有好的自相关函数,并通过仿真予以了证实。 Chaotic sequences have been widely used as pseudorandom sequences.But the problem of how to judge the performances of their autocorrelation functions,up to now,has not yet been solved completely.Because of this,the applications of chaotic sequences are limited.In the paper,by method of phase space,we prove that the autocorrelation performance of a chaotic sequence is determined by whether its phase space trajectory is axis symmetrical,and we deduce a theorem that a sequence which phase space trajectory is axis symmetrical has good autocorrelation performance.The theorem is verified by simulations.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2010年第6期859-863,共5页 Journal of University of Electronic Science and Technology of China
基金 江西省教育厅科技基金(GJJ09286 GJJ09553 GJJ09554)
关键词 自相关 混沌映射 相空间 伪随机序列 TENT映射 autocorrelation chaotic map phase space pseudorandom sequence Tent map
  • 相关文献

参考文献18

  • 1GAMBI E, CHIARALUCE F, SPINSANTE S. Chaos-based radars for automotive applications: Theoretical issues and numerical simulation[J]. IEEE Transactions on Vehicular Technology, 2008, 57(6): 3858-3863.
  • 2SUNE R J. Noise radar using random phase and frequency modulation[J]. IEEE Trans Geosci Remote Sens, 2004, 42(11): 2370-2384.
  • 3FLORES B C, SOLIS E A, THOMAS G. Assessment of chaos-based FM signals for range-doppler imaging[J], lEE Proc-Radar Sonar Navig, 2003, 150(4): 313-322.
  • 4FLORES B C, SOLIS E A, THOMAS G: Chaotic signals for wideband radar imaging[C]//Proc SPIE-Int Soc Opt Eng. Orlando, F1, USA: Proc SPIE, 2002, 4727:100-111.
  • 5陈滨,周正欧,刘光祜,张勇,唐军.混沌噪声源在噪声雷达的应用[J].现代雷达,2008,30(5):24-28. 被引量:8
  • 6CHEN Bin, TANG Jun, ZHANG Yong, et al. Chaotic signals with weak-structure used for high resolution radar imaging[C]//CMC 2009. Kunming, Yunnan: IEEE Press, 2009, 1: 325-330.
  • 7MYERS J, FLORES B C. Radar imaging via random FM correlations[C]//Proc SPIE-Int Soc Opt Eng. Orlando, FI, USA: Proe SPIE, 1999, 3721: 130-139.
  • 8VIJAYARAGHAVAN V, HENRY L. A novel chaos-based high-resolution imaging technique and its application to through-the-wall imaging[J]. IEEE Signal Processing Letters, 2005, 12(7): 528-531.
  • 9XU Y, NARAYANAN R M, XU X, et al. Polarimetric processing of coherent random noise radar data for buried object detection[J]. IEEE Trans Geosci Remote Sens, 2001, 39(3): 467-478.
  • 10GU H, LIU G; ZHU X, et al. A new kind of noise-radar random binary phase coded CW radar[C]//Proc IEEE National Radar Conf Syracuse. NY, USA: IEEE Press, 1997: 202-206.

二级参考文献35

  • 1BAPTISTA M S. Cryptography with chaos[J]. Phys Lett A, 1998, 240: 50-54.
  • 2WONG W K, LEE L P, WONG K W. A modified chaotic cryptographic method[J]. Comput Phys Commun, 2000, 138: 234-236.
  • 3WONG K W. A fast chaotic cryptography scheme with dynamic look-up table[J]. Phys Lett A, 2002, 298: 238-242.
  • 4WONG K W, HO S W, YUNG C K. A chaotic cryptography scheme for generating short ciphertext[J]. Phys Lett A, 2003, 310: 67-73.
  • 5SHANNON C E. Communication theory of security system[J]. Bell System Technical Journal, 1949, 28: 656- 715.
  • 6ALVAREZ G, MONTOYA F, ROMERA M, et al. Cryptanalyzing an improved security modulated chaotic encryption scheme using ciphertext absolute value[J]. Chaos, Solitons and Fractals, 2005, 23: 1749-1756.
  • 7CHEN Yong, LIAO Xiao-feng. Cryptanalysis on a modified Baptista-type cryptosystem with chaotic masking algorithm[J]. Phys Lett A, 2005, 342: 389-396.
  • 8ALVAREZ G, MONTOYA F, ROMERA M, et al. Cryptanalysis of dynamic look-up table based chaotic cryptosystems[J]. Phys Let A, 2004, 326:211-218.
  • 9ALVAREZ G; MONTOYA F, ROMERA M, et al. Cryptanalysis of an ergodic chaotic cipher[J]. Phys Lett A, 2003, 311: 172-179.
  • 10ALVAREZ G, MONTOYA F, ROMERA M, et al. Cryptanalysis of a discrete chaotic cryptosystem using external key[J]. Phys Lett A, 2003, 319: 334-339.

共引文献10

同被引文献35

  • 1蒋本铁,刘嘉辉,徐彬.一种基于混沌和Fibonacci伪随机数列的加密方法[J].东北大学学报(自然科学版),2005,26(9):864-866. 被引量:10
  • 2Yang Y, Blum R S. MIMO Radar Waveform Design Based on MI and MMSE [J]. IEEE Trans. on Aerospace and Electronic Systems (S0018-9251), 2007, 43(1): 330-342.
  • 3Stoica P, Li J, Zhu X. Waveform Synthesis for Diversity-based Transmit Beampattem Design [J]. IEEE Trans. on Signal Processing (S1053-587X), 2008, 56(6): 2593-2598.
  • 4Deng H. Polyphase Code Design for Orthogonal Netted Radar Systems [J]. IEEE Trans. on Signal Processing (S1053-587X), 2004, 52(11): 3126-3135.
  • 5Liu Bo, He Zishu, Zeng Jiankui, et al. Polyphase Orthogonal Code Design for MIMO Radar Systems [C]// Proceedings of CIE Intemational Conference of Radar, Shanghai, China. USA: IEEE, 2006: 113-116.
  • 6Zeng J K. The Application of Chaotic Signal in MIMO Radar [C]// 2010 2nd International Conference on Industrial Mechatronics and Automation, Wuhan, China. USA: IEEE, 2010: 214-216.
  • 7Willsey M S, Cuomo K M, Oppenheim A V. Quasi-orthogonal Wideband Radar Waveforms Based on Chaotic Systems [J]. IEEE Trans. on Aerospace and Electronic Systems (S0018-9251), 2011, 47(3): 1974-1984.
  • 8Song X F, Zhou S L, Willett P. Reducing the Waveform Cross-correlation of MIMO Radar with Space Time Coding [J]. IEEE Trans. on Signal Processing (S1053-587X), 2010, 58(8): 4213-4224.
  • 9LIANG JiYe & QIAN YuHua Key Laboratory of Computational Intelligence and Chinese Information Processing,Ministry of Education,School of Computer & Information Technology,Shanxi University,Taiyuan 030006,China.Information granules and entropy theory in information systems[J].Science in China(Series F),2008,51(10):1427-1444. 被引量:41
  • 10何四华,杨绍清,石爱国,李天伟.基于时空混沌的图像分割算法[J].红外与激光工程,2009,38(1):144-148. 被引量:6

引证文献5

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部