期刊文献+

可调数学形态学的角点检测新算法

New Algorithm for Corner Detection with Regulated Morphology
下载PDF
导出
摘要 提出了一种新的基于可调形态学的角点检测方法。该方法采用对称圆形结构元素,通过选择合适的可调参数,对图像进行可调膨胀和可调腐蚀等一系列运算,先分别计算图像中凸角点和凹角点的精确位置,再将两者结合起来,从而得到图像中的所有角点。利用圆形结构元素大幅度减少了算法的计算量。可调形态学的应用克服了传统形态学检测角点不准确的缺点。实验结果证实了当可调算子中的参数取合适值时,该方法可以较精确地检测出图像中的角点位置。 A novel corner detection algorithm based on regulated morphology is proposed in this paper.Symmetric disk structure element is adopted in the algorithm.Firstly,by choosing a proper regulated parameter,the image is processed with a series of operations such as regulated erosion and regulated dilation to get accurate positions of the convex and concave corners respectively,and then all corners in the image are obtained by combing the two kinds of corners together.The use of disk structure element highly decreases the computation cost.The method based on regulated morphology is more precise than methods based on traditional morphology.The experiment results prove that when a proper value of the regulated parameter is chosen,the proposed new detector can precisely detect corners in images.
出处 《电子科技大学学报》 EI CAS CSCD 北大核心 2010年第6期886-890,共5页 Journal of University of Electronic Science and Technology of China
基金 江苏省自然科学基金(BK2003005)
关键词 角点检测 膨胀 腐蚀 数学形态学 结构元素 corner detection dilation erosion mathematical morphology structure element
  • 相关文献

参考文献1

二级参考文献11

  • 1P. Soille and H. Talbot, "Directional morphological filtering," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 23, no. 11, pp. 1313-1329, 2001.
  • 2L. Hong, Y. Wan, and A. Jain, “Fingerprint image enhancement: algorithm and performance evaluation,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 777-789, 1998.
  • 3S. Greenberg and D. Kogan, "Structure-adaptive anisotropic filter applied to fingerprint," Optical Engineering, vol. 44, no. 12, pp. 127004-127004, 2005.
  • 4D. Mario and D. Maltoni, "Direct gay-scale minutiae detection in fingerprints," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 1, pp. 27-40, 1997.
  • 5C. Sharat, C. Alexander, and G Venu, "Fingerprint enhancement using STFT analysis," Pattern Recognition, vol. 40, no. 1, pp. 198-211, 2006.
  • 6J.-D. Stosz and L. A. Alyea, "Automated system for fingerprint authentication using pores and ridges structure," in Proc. SPIE 2277, International Conference on Automatic Systems for the Identification and Inspection of Humans, San diego, CA, USA, 1994, pp. 210-223.
  • 7T. C. Malleswara, "Feature extraction for fingerprint classification," Pattern Recognition, vol.8, no. 2, pp. 181-192, 1976.
  • 8A. E Fitz and R. J. Green, "Fingerprint classification using a hexagonal fast Fourier transform," Pattern Recognition, vol. 29, no. 10, pp. 1587-1597, 1996.
  • 9P. Soille, E. J. Breen, and R. Jones, "Recursive implementation of erosions and dilations along discrete lines at arbitrary angles," IEEE Trans. Pattern Analysis and Machine Intellivence. vol. 18. no. 5. pp. 749-759. 1996.
  • 10X.-F. Liang and A. Tetsuo, "A linear time algorithm for binary fingerprint image denoising using distance transform," IEICE Trans. on Communications, vol. E89B, no. 5, pp. 1534-1542. 2006.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部