期刊文献+

一种新型的被动启发式粒子群优化算法 被引量:8

A new passive heuristic particle swarm optimization algorithm
下载PDF
导出
摘要 标准粒子群优化(SPSO)算法具有参数少、鲁棒性好、易于实现等优点,但同时也具有收敛慢、易于陷入局部极值点等缺点.在SPSO算法基础上,通过在其粒子速度更新公式的自我认知部分和社会经验部分引入惯性学习因子(ωc1,ωc2),提出一种新型的被动启发式粒子群优化算法(PHPSO).分别采用SPSO和PHPSO两种优化算法对测试函数进行求解,将这两种算法的优化过程进行比较分析,结果表明,与SPSO算法相比,该文提出的PHPSO算法收敛速度大幅提高,且更易得到全局最优解,收敛精度更高. The standard particle swarm optimization(PSO) has the advantages of fewer parameters,robustness and it is easier to implement,but it also has the disadvantage of a slow convergence rate and easily falls into a local extremum point.In this paper,a new passive heuristic particle swarm optimization(PHPSO) algorithm was proposed by introducing the inertia-learning factors to the cognitive component and social component of a standard PSO's velocity updating formula.The author applied the standard PSO and the new PHPSO respectively to optimize the test functions.The comparison of the processes in these optimization algorithms shows that the convergence of the new PHPSO is much faster than the standard PSO,and is capable of obtaining a global solution which is much more accurate.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2010年第10期1298-1302,共5页 Journal of Harbin Engineering University
基金 111计划资助项目(B07019) 哈尔滨工程大学基础研究基金资助项目(002010260718)
关键词 粒子群优化算法 惯性权重 惯性学习因子 收敛速度 收敛精度 particle swarm optimization(PSO) inertia weight inertia-learning factor rate of convergence accuracy of convergence
  • 相关文献

参考文献10

  • 1秦洪德.船舶结构优化设计[M].哈尔滨:哈尔滨工程大学出版社,2009:148-164.
  • 2LI L J, HUANG Z B, LIU F. A heuristic particle swarm optimization method for truss structures with discrete variables [J]. Computers and Structures, 2009, 87: 435-443.
  • 3PEREZ R E, BEHDINAN K. Particle swarm approach for structural design optimization [ J]. Computers and Structures, 2007, 85: 1579-1588.
  • 4HE S, PREMPAIN E, WU Q H. An improved particle swarm optimizer for mechanical design optimization problems [J]. Eng Optim, 2004;36(5) :585-605.
  • 5HE S, WU Q H, WEN J Y, et al. A particle swarm optimizer with passive congregation [ J]. Bio-System, 2004, 78 (1-3) :135-47.
  • 6PINTO A, PERI D, CAMPANA E F. Muhiobjective optimization of a containership using deterministic particle swarm optimization [ J ]. Journal of Ship Research, 2007, 51 (3) : 217-228.
  • 7FOURIE P C, GROENWOLD A A. The particle swarm optimization algorithm in size and shape optimization [ J ]. Structural and Multidisciplinary Optimization, 2002, 23 (4) : 259-267.
  • 8RATNAWEERA A, HALGAMUGE S K, WATSON H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficient [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3):240-255.
  • 9NIU Q, JIAO B, GU X S. Particle swarm optimization combined with genetic operators for job shop scheduling problem with fuzzy processing time [ J ]. Applied Mathematics and Computation, 2008, 205: 148-158.
  • 10KAVEH A, TALATAHARI S. Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures [ J ]. Computers and Structures, 2009, 87: 267-283.

同被引文献93

引证文献8

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部