期刊文献+

改进的混合高斯自适应背景模型 被引量:15

An improved Gaussian mixture model for an adaptive background model
下载PDF
导出
摘要 混合高斯背景模型是背景建模领域最常用的构建算法,针对该方法在实际应用中的缺陷,提出了2点改进措施:像素过滤方法和按背景演变过程进行划分的自适应学习率方法.像素过滤方法记录某点像素值在一个短时间段内的变化情况,对其进行统计分析,根据均值和方差过滤掉快速运动目标的动态干扰像素,增强算法的鲁棒性;新的自适应学习率方法将背景的形成过程划分为4个阶段,对不同的阶段使用不同的学习率,加速背景的形成和消退.应用改进后的算法在两段街道监控视频中同原算法进行了对比实验.实验结果表明,改进方法在视觉效果上有着显著提高,背景形成迅速、清晰.改进方法增强了算法的抗干扰能力,提高了背景的形成和切换速度,可以作为基础算法应用于相关视觉处理之中. The Gaussian Mixture Model(GMM) has been widely used for modeling backgrounds.Aiming to overcome the defect in practical application,the classical algorithm was improved in two ways.The pixel filtering method and the new adaptive learning rate method were presented.The pixel filtering method recorded the pixel value of a point in a short period of time,and then analyzed this data.According to the pixel mean and variance,the dynamic interfering pixels of fast moving targets can be filtered out.The formation of the background was divided into four stages in the new adaptive learning rate method.Additionally,different stages were assigned different learning rates,which can speed up the background of the formation and regression.Compared with the original algorithm,the experimental results showed that the improved algorithm has a good visual effect in the surveillance video of two streets,and the background forms more quickly and clearly.The improved method,which can be applied to other visual processing algorithms,enhances the robustness and accelerates the formation of the background.
出处 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2010年第10期1348-1353,1392,共7页 Journal of Harbin Engineering University
基金 国家自然科学基金资助项目(60875025)
关键词 混合高斯模型 背景建模 像素过滤 自适应学习率 Gaussian mixture model background model pixel filter adaptive learning rate
  • 相关文献

参考文献10

  • 1SEKI M, WADA T, FUJIWARA H. Background subtraction based on cooccurrence of image variations [ C ]// Proceeding of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, D C, USA, 2003.
  • 2CHENYT, CHENCS, HUANGC R, HUNGYP. Efficient hierarchical method for background subtraction [ J ]. Pattern Recogniton, 2007, 40(10) :2706-2715.
  • 3LEE D S. Effective Gaussian mixture learning for video background subtraction [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27 ( 5 ) : 827- 832.
  • 4POWER P W, SCHOONEES J A. Understanding back-ground mixture models for foreground segmentation [ C ]//Proceedings of Image and Vison Computing. New Zealand : Auckland University Press, 2002:267-271.
  • 5STAUFFER C, GRIMSON W E L. Learning patterns of activity using real-time tracking [ J ]. IEEE Trans PAM1,2000, 22(8) :747-757.
  • 6RIDDER C, MUNKELT O, KIRCHNER H. Adaptive back-ground estimation and foreground detection using Kalman filtering [ C]//Proceedings of the Intl Conference on Recent Advances Sinmechatronics Istanbul, Turkey, 1995.
  • 7STAUFFER C, GRIMSON W E L. Adaptive background mixture models for real-time tracking[ C ]. Int'l Conf Computer Vision and Pattern Recognition. [s. l.], I999.
  • 8ELGAMMAL A, HARWOOD D, DAVIS L S. Non-parametric model for background subtraction [ J ]. European Corff Computer Vision, 2000, 2:751-767.
  • 9王永忠,梁彦,潘泉,程咏梅,赵春晖.基于自适应混合高斯模型的时空背景建模[J].自动化学报,2009,35(4):371-378. 被引量:78
  • 10刘鑫,刘辉,强振平,耿续涛.混合高斯模型和帧间差分相融合的自适应背景模型[J].中国图象图形学报,2008,13(4):729-734. 被引量:110

二级参考文献24

  • 1朱明旱,罗大庸,曹倩霞.帧间差分与背景差分相融合的运动目标检测算法[J].计算机测量与控制,2005,13(3):215-217. 被引量:77
  • 2Friedman N, Russell S. Image segmentation in video sequences: a probabilistic approach. In: Proceedings of the 13th Conference on Uncertainty in Artificial Intelligence. Providence, USA: Morgan Kaufmann, 1997. 175-181
  • 3Stauffer C, Grimson W E L. Learning patterns of activity using real-time tracking. IEEE Transactions on Pattern AnaJysis and Machine Intelligence, 2000, 22(8): 747-757
  • 4Kaewtrakulpong P, Bowden R. An improved adaptive back- ground mixture model for real-time tracking with shadow detection. In: Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems. Providence, USA: Kluwer Academic Publishers, 2001. 1-5
  • 5Zivkovic Z, van der Heijden F. Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recognition Letters, 2006, 27(7): 773-780
  • 6Lee D S. Effective Gaussian mixture learning for video background subtraction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(5): 827-832
  • 7Power P W, Schoonees J A. Understanding background mixture models for foreground segmentation. In: Proceedings of Image and Vision Computing New Zealand. Auckland, New Zealand: Auckland University Press, 2002. 267-271
  • 8Elgammal A, Duraiswami R, Haxwood D, Davis L S. Background and foreground modeling using nonparametric kernel density estimation for visual surveillance. Proceedings of IEEE, 2002, 90(7): 1151-1163
  • 9Stenger B, Ramesh V, Paragios N, Coetzee F, Buhmann J M. Topology free hidden Markov models: application to background modeling. In: Proceedings of the 8th International Conference on Computer Vision. Vancouver, Canada: IEEE, 2001. 294-301
  • 10Toyama K, Krumm J, Brumitt B, Meyers B. Wallflower: principles and practice of background maintenance. In: Proceedings of the 7th International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 255-261

共引文献176

同被引文献125

  • 1桂本烨,钱徽,朱淼良.一种优化梯度计算的改进HS光流算法[J].中国图象图形学报,2005,10(8):1052-1058. 被引量:9
  • 2侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 3郭磊,李克强,王建强,连小珉.一种基于特征的车辆检测方法[J].汽车工程,2006,28(11):1031-1035. 被引量:22
  • 4张晖,董育宁.基于视频的车辆检测算法综述[J].南京邮电大学学报(自然科学版),2007,27(3):88-94. 被引量:25
  • 5李刚,曾锐利,林凌,王蒙军.基于帧间颜色梯度的背景建模[J].光学精密工程,2007,15(8):1257-1262. 被引量:7
  • 6TOYAMA K,KRUMM J,BRUMITT B,et al.Wall-Flower:Principles and practice of background mainte-nance[C].Proc.of IEEE International Conference onComputer Vision,Corfu,Greece,1999:255-261.
  • 7HARITAOGLU I,HARWOODAND D,DAVIS L S.W4:real-time surveillance of people and their activities[J].IEEE Transactions on Pattern Analysis and Machine In-telligence,2000,2(8):809-830.
  • 8李小鹏,严严,章毓晋.若干背景建模方法的分析和比较[C].第十三届全国图象图形学学术会议,2006:482-486.
  • 9ELGAMMAL A,HARWOOD D,DAVIS L.Non-para-metric model for background subtraction[C].Proc.ofEuropean Conference on Computer Vision,Dublin,Ire-land,2000:751-767.
  • 10LIU Y ZH,YAO H X,GAO W,et al.NonparametricBackground Generation[J].Journal of Visual Communi-cation and Image Representation,2007,18(3):253-263.

引证文献15

二级引证文献79

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部