期刊文献+

支持向量回归机在风电系统桨距角预测中的应用 被引量:1

Application of SVR for pitch angle forecasting in wind turbine
下载PDF
导出
摘要 为解决风力发电系统中随着风速的变化,桨距角也随之发生不确定变化的问题,运用支持向量回归机算法对桨距角预测和仿真检验,并可将预测误差达到最小。该方法主要包括支持向量机中的回归分析技术,针对有限样本情况得到现有信息下的最优解。应用结果表明,此算法精度高,泛化能力强,可提高整个变桨距系统的控制精度和效率。 To solve the existing problems of pitch angle change uncertainty with change of wind speed in wind turbine, the SVR is studied to predict pitch angle and simulation test, and the calculate error is minimized in this paper. The methods include regression analysis technology that can find the best data by limited samples. The results show that the accurate and great generalization ability algorithm can improve the control accuracy and efficiency in pitch-controlled wind turbine.
出处 《电子设计工程》 2010年第12期105-107,共3页 Electronic Design Engineering
关键词 风力发电 桨距角 支持向量回归机(SVR) 仿真测试 wind turbine pitch angle Support Vector Regression(SVR) simulation test
  • 相关文献

参考文献5

二级参考文献35

  • 1SMOLA A J, SCHOLKOPF B. A tutorial on support vector regression [J]. Statistics and Computing, 2004, 14: 199-222.
  • 2SI Fengqi, ROMERO C E, YAO Zheng, et al. A new approach for function approximation in boiler combustion optimization based on modified structural AOSVR [J]. Expert Systems with Applications, 2009, 36(4): 8691-8704.
  • 3ZHANG Haoran, WANG Xiaodong, ZHANG Changjiang, et al. Using least square SVM for nonlin- ear systems modeling and control [J]. Asian Journal of Control, 2007, 9(2): 215-220.
  • 4ZHAN Y, CHENG H Z. A robust support vector algorithm for harmonic and interharmonic analysis of electric power system[J]. Electric Power Systems Research, 2005, 73(3): 393-400.
  • 5HASTIE T, ROSSET S, TIBSHIRANI R, et al. The entire regularization path for the support vector machine [J]. Journal of Machine Learning Research, 2004(5) : 1391-1415.
  • 6MA Junshui, THEILER J, PERKINS S. Accurate on -line support vector regression [J]. Neural Computation, 2003, 15(11): 2683-2703.
  • 7VAPNIK V N, GOLOWICH S E, SMOLA A. Support vector method for function approximation regression estimation and signal processing [C]//MOZER M C. Advances in Neural Information Processing Systems: 9. Cambridge, MA, USA: MIT Press, 1997: 281-287.
  • 8Vapnik V N. Statistical learning theory[M]. New York, 1998.
  • 9Scholkoph B, Smola A J, Bartlett P L. New support vectoral gorithms[J]. Neural Computation, 2000, 12:1207-1245.
  • 10Suykens J A K, Branbanter J K, Lukas L, et al. Weighted least squares support vector machines: robustness and spare approximation [J]. Neurocomputing, 2002, 48(1): 85-105.

共引文献2394

同被引文献5

引证文献1

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部