期刊文献+

基于修正的Snake模型与特征对象法的多运动目标分割 被引量:1

Multi-movement Target Division Based on Correctional Snake Model and Characteristic Object Method
下载PDF
导出
摘要 在分析常规的运动目标分割算法的基础上,以计算简单、速度快、能精确提取运动目标为原则,提出了基于特征对象的运动目标分割算法,并将该法与修正的Snake模型结合进行了运动目标外廓的精确提取.分析和实验表明:该算法需要调整的参数少,计算简单,速度快,抗干扰能力强,可以有效地消除多帧间运动目标的遮挡,在多运动目标不重叠的情况下,能精确定位多运动目标的外轮廓. Based on the moving target division algorithm and the principle of simple calculation,great speed,and precise withdrawal of the moving target,the authors proposed an automatic division algorithm of moving target based on characteristics object,which combines the algorithm with correctional snake model to precisely withdraw the external outline of the moving target.Analysis and experiments have shown that the algorithm is simple and fast,few parameters need to be adjusted,and the capacity to resist disturbance is strong.The multi-frame moving object mask can be effectively eliminated.Without overlapping multiple moving objects,the external outline of each moving object can be precisely located.
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第11期46-50,共5页 Journal of Hunan University:Natural Sciences
基金 湖南省科技厅科技计划项目(2010FJ4107)
关键词 多运动目标 修正的Snake模型 特征对象 检测 外轮廓 multiple moving targets correctional Snake model characteristic object examination external outline
  • 相关文献

参考文献14

  • 1方帅,薛方正,徐心和.基于背景建模的动态目标检测算法的研究与仿真[J].系统仿真学报,2005,17(1):159-161. 被引量:40
  • 2卢官明,郎苏娟.基于YC_bC_r颜色空间的背景建模及运动目标检测[J].南京邮电大学学报(自然科学版),2009,29(6):17-22. 被引量:5
  • 3周箴毅,胡福乔.基于背景建模的动态场景目标检测[J].计算机工程,2008,34(24):203-205. 被引量:4
  • 4徐玮,王炜,张茂军,高辉.虚拟实景对象建模与表现[J].计算机仿真,2009,26(12):214-217. 被引量:5
  • 5GAVRILA D M.The visual analysis of human movement:a survey[J].Computer Vision and Image Understanding,1999,73(1):82-98.
  • 6XU H F,AYOUNIS A A,KABUKA M R.Automatic moving object extraction for content-based applications[J].IEEE Transactions on Circuits and Systems for Video Technology,2004,4(5):796-812.
  • 7NETI A,COLONNESE S,RUSSO G,et al.Automatic moving object and background separation[J].Signal Processing,1998,66(2):219-232.
  • 8GHARAVI H,MILLS M.Block-matching motion estimation algorithms-new results[J].IEEE Transaction on Circuits and Systems,1990,37(5):649-651.
  • 9DANIEL G P,CHUANG G,SUN M T.Semantic video object extraction using four-band water shed and partition lattice operators[J].IEEE Transactions on Circuits and Systems for Video Technology,2001,11(5):603-618.
  • 10LOANNIS K,MICHAEL G S.Spatio-temporal segmentation and tracking of objects for visualization of video conference image sequences[J].IEEE Transactions on Circuits and Systems Video Technology,2000,10(8):1388-1402.

二级参考文献45

  • 1刘彦宏,杜威,李华.足球视频序列中球员的分割与跟踪算法[J].系统仿真学报,2001,13(S2):90-93. 被引量:7
  • 2周西汉,刘勃,周荷琴.一种基于对称差分和背景消减的运动检测方法[J].计算机仿真,2005,22(4):117-119. 被引量:28
  • 3陈柏生,陈锻生.基于归一化rgb彩色模型的运动阴影检测[J].计算机应用,2006,26(8):1879-1881. 被引量:15
  • 4代科学,李国辉,涂丹,袁见.监控视频运动目标检测减背景技术的研究现状和展望[J].中国图象图形学报,2006,11(7):919-927. 被引量:169
  • 5Friedman N, Russell S. Image Segmentation in Video Sequences: A Probabilistic Approach[C]//Proc. of the 13th Conference on Uncertainty in Artificial Intelligence. Providence, Rhode Island, USA: Morgan Kaufmann, 1997.
  • 6Oliver N, Rosario B, Pentland A. A Bayesian Computer Vision System for Modeling Human Interactions[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2000, 22(8): 831-843.
  • 7Zhong Jing, Sclaroff S. Segmenting Foreground Objects from a Dynamic Textured Background via a Robust Kalman Filter[C]//Proc of the 9th International Conference on Computer Vision. [S.l.]: IEEE Press, 2003: 44.
  • 8Mittal A, Paragios N. Motion-based Background Substraction Using Adaptive Kernel Density Estimation[C]//Proc. of Computer Society Conference on Computer Vision and Pattern Recognition. [S. l.]: IEEE Press, 2004: 302-309.
  • 9Elgammal A, Duraiswami R, Davis L. Probabilistic Tracking in Joint Feature-spatial Spaces[C]//Proc. of Computer Society Conference on Computer Vision and Pattern Recognition.[S.l.]: IEEE Press, 2003: 781.
  • 10Sheikn Y, Shah M. Baysian Modeling of Dynamic Scenes for Object Detection[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1778-1792.

共引文献50

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部