摘要
Based on controls of structural style and the position in coalbed methane (CBM) development, we used a method of curvatures to study its relations with CBM development parameters. We calculated structural curvatures of contours of the No.3 coal seam floor of the Shanxi Formation in the Zaoyuan block of the Qinshui Basin and analyzed its relations with development parameters of coalbed methane wells. The results show that structural curvature is negatively related to coal reservoir pressure, while positively related to permeability. With an increase in structural curvature, the average production of coalbed methane wells increases at first and then decreases, reaching the highest production at 0.02 m–1 of structural curvature. Therefore, structural cur-vature can be an important index for potential evaluation of coalbed methane development and provide a basis for siting coalbed methane wells.
Based on controls of structural style and the position in coalbed methane (CBM) development, we used a method of curvatures to study its relations with CBM development parameters. We calculated structural curvatures of contours of the No.3 coal seam floor of the Shanxi Formation in the Zaoyuan block of the Qinshui Basin and analyzed its relations with development parameters of coalbed methane wells. The results show that structural curvature is negatively related to coal reservoir pressure, while positively related to permeability. With an increase in structural curvature, the average production of coalbed methane wells increases at first and then decreases, reaching the highest production at 0.02 m-1 of structural curvature. Therefore, structural curvature can be an important index for potential evaluation of coalbed methane development and provide a basis for siting coalbed methane wells.
基金
support for this work, provided by the National Basic Research Program of China (No2009 CB219605)
the National Major Research Program for Science and Technology of China (No2008 ZX05033-003)