期刊文献+

一类反应扩散系统非常数正解的非存在性

Non-existence of positive non-constant steady-states of a certain class of reaction-diffusion systems
原文传递
导出
摘要 考虑了一类齐次Neumann边界条件下具反馈效应的反应扩散系统的平衡态,建立了正稳态解的先验估计。运用能量方法和隐函数定理分析扩散系数对非常数正稳态解的非存在性的影响。结果表明,当三个扩散系数之任一足够大时,该反应扩散系统的平衡态不存在非常数正解。 A certain class of reaction-diffusion systems with feedback effect subject to homogeneous Neumann boundary condition and the positive steady-state solutions are considered. Some priori estimates are established for positive steady- state solutions, then the effects of the diffusion coefficient on the non-existence of positive non-constant steady-state so- lutions are analyzed by the energy method and implicit functional theorem. The results show that if one of the coeffi- cients is large enough, the system has no positive non-constant steady-state solutions.
作者 别群益
机构地区 三峡大学理学院
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2010年第11期88-92,共5页 Journal of Shandong University(Natural Science)
基金 湖北省教育厅自然科学基金资助项目(Q200713001)
关键词 反应扩散系统 正稳态解 非存在性 reaction-diffusion system positive steady-state solutions non-existence
  • 相关文献

参考文献1

二级参考文献17

  • 1Braza, P. A., The bifurcation structure of the Holling-Tanner model for predator-prey interactions using two-timing, SIAM J. Appl. Math., 63, 2003, 889-904.
  • 2Du, Y. H. and Hsu, S. B., A diffusive predator-prey model in heterogeneous environment, J. Diff. Eqs., 203, 2004, 331-364.
  • 3Du, Y. H. and Wang, M. X., Asymptotic behavior of positive steady-states to a predator-prey model, Proc. Roy. Soc. Edinburgh Sect. A, 136, 2006, 759-778.
  • 4Henry, D., Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, Vol. 840, Springer-Verlag, Berlin, 1981.
  • 5Hsu, S. B. and Huang, T. W., Global stability for a class of predator-prey systems, SIAM J. Appl. Math., 55, 1995, 763-783.
  • 6Lin, C. S., Ni, W. M. and Takagi, I., Large amplitude stationary solutions to a chemotais systems, J. Diff. Eqs., 72, 1988, 1-27.
  • 7Lou, Y. and Ni, W. M., Diffusion, self-diffusion and cross-diffusion, J. Diff. Eqs., 131, 1996, 79-131.
  • 8May, R. M., Stability and Complexity in Model Ecosystems, Princeton University Press, Princeton, 1973.
  • 9Pang, P. Y. H. and Wang, M. X., Qualitative analysis of a ratio-dependent predator-prey system with diffusion, Proc. Roy. Soc. Edinburgh Sect. A, 133, 2003, 919-942.
  • 10Pang, P. Y. H. and Wang, M. X., Strategy and stationary pattern in a three-species predator-prey model, J. Diff. Eqs., 200(2), 2004, 245-273.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部