期刊文献+

求Riesz空间非线性分数阶对流扩散方程的近似解

Approximate solutions for a Riesz space nonlinear fractional convection-diffusion equation
下载PDF
导出
摘要 在Captuo意义下建立了一类Riesz空间非线性分数阶对流扩散方程,并利用Adomian分解方法给出了该方程满足初始条件的以无穷级数形式表示的解. This paper establishes a class of a Riesz space nonlinear fractional convection-diffusion equation in the sense of the Captuo.Using Adomian decomposition method,we give the form of infinite series solution of the equation satisfying the initial conditions.
出处 《西南民族大学学报(自然科学版)》 CAS 2010年第6期935-938,共4页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 分数阶微分方程 ADOMIAN分解法 fractional differenrial equation Adomian decomposition method
  • 相关文献

参考文献11

  • 1沈淑君,刘发旺.Riesz空间分数阶对流扩散方程的一种计算有效求解方法[J].厦门大学学报(自然科学版),2008,47(1):20-24. 被引量:2
  • 2PODLUBNY I.Fractional differential equations[M].San Diego:Academic Press,1999.
  • 3SAMKO G,KILBAS A A,MARICHEV O I.Fractional Integrals and Derivatives:Theory and Applications[M].Gordon & Breach,Yverdon,1993.
  • 4KEMPLE S,BEYER H.Global and causal solutions of fractional differential equations,in:Transform Methods and Special Functions:Varna96[C].Proceedings of 2nd International Workshop (SCTP),Singapore,1997:210-216.
  • 5Shawagfeh N T.The decomposition method for fractional differential equations[J].J Frac Calc,1999,16:27-33.
  • 6ADOMIAN G.Solving Frontier Problems of Physics:The Decomposition Method[M].Dordrecht:Kluwer Academic Publishers,1994.
  • 7CHERRUALULT Y,ADOMIAN G.Decomposition method:a new proof of convergence[J].Math Comput Modelling,1993,18:103-106.
  • 8ABBOUI K,CHERRUAULT Y.New ideas for proving convergence of decomposition methods[J].Comput Math Appl,1995,29 (7):103-105.
  • 9CHERRUAULT Y.Convergence of Adomian's method[J].Kybernet-es,1989,18:31-38.
  • 10NABIL T.Shawagfeh.Analytical approximate solutions for nonlinear fractional differential equations[M].Math Comput,2002,131:517-529.

二级参考文献18

  • 1Ilic M,Liu F,Turner I,et al.Numerical approximation of a fractional-in-space diffusion equation (Ⅱ)-with nonhomogeneous boundary conditions[J].Fractional Calculus & Applied Analysis,2006,9(4):333-349.
  • 2Samko S G,Kilbas A A,Marichev O I.Fractional integrals and derivatives:theory and applications[M].Amsterdam:Gordon and Breach,1993.
  • 3Podlubny I.Fractional differential equations[M].New York:Academic Press,1999.
  • 4Gorenflo R,Mainardi F,Moretti D.Time fractional diffusion:a discrete random walk approach[J].Journal of Nonlinear Dynamics,2000,29:129-143.
  • 5Huang F,Liu F.The fundamental solution of the space-time fractional advection-dispersion equation[J].J Appl Math & Computing,2005,18(1/2):339-350.
  • 6Meerschaert M M,Scheffler H,Tadjeran C.Finite difference methods for two-dimensional fractional dispersion equation[J].J Comp Phys,2006,211:249-261.
  • 7Liu F,Anh V,Turner I.Numerical solution of the space fractional Fokker-Planck equation[J].J Comp Appl Mathematics,2004,166:209-219.
  • 8Shen S,Liu F,Anh V,et al.Detailed analysis of an explicit conservative difference approximation for the time fractional diffusion equation[J].J Appl Math Computing,2006,22(3):1-19.
  • 9Liu F,Zhuang P,Anh V,et al.Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation[J].Appl Math Comp,2007,191:12-20.
  • 10Liu Q,Liu F,Turner I,et al.Approximation of the Lévy-Feller Advection-Dispersion process by random walk and finite difference method[J].Phys Comp,2007,222:57-70.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部