期刊文献+

基于窗口滑动改进Prony算法的电力系统低频振荡识别 被引量:31

A Moving-window Prony Algorithm for Power System Low Frequency Oscillation Identification
下载PDF
导出
摘要 Prony算法是获取电力系统低频振荡信息的有效方法。针对传统Prony方法只能选取局部信号进行分析且对噪声敏感的问题,提出了固定窗长滑动的改进措施,进而应用于电力系统低频振荡识别中。与传统方法相比,改进的Prony方法通过对信号采取滑动窗口处理,即将拟合目标函数由局部误差平方最小变为分窗口误差平方和最小,从而能够计及较长时间内的误差平均效应,因而具有抗噪声能力强、不受信号长度影响的特点。基于DSATools的仿真分析证实了窗口滑动的改进Prony算法能有效识别低频振荡模式,并且该方法在含噪声环境下仍然能够保持较高的准确性。 Prony algorithm is an effective method to derive characteristics of power system low frequency oscillations. However, the traditional Prony algorithms are very sensitive to noises and can only be applied to part of signal every time. This paper proposes the moving-window Prony algorithm to the identification of low frequency oscillation of power system. With the moving-window technique, the objective function of the proposed Prony method is changed into the least square error by windows, which is different from the partial least square error corresponding to the traditional algorithms. Thus, the moving window Prony algorithm has stronger adaptability to noise and could be applied to long time range signals. The simulation results based on DSA Tools demonstrate that the moving window Prony algorithm has good and effective performance for identification of power system low frequency oscillation, even in cases when the PMU's data contains noises.
出处 《电力系统自动化》 EI CSCD 北大核心 2010年第22期24-28,共5页 Automation of Electric Power Systems
基金 国家自然科学基金资助项目(50707035 50920105705 50837002) 国家重点基础研究发展计划(973计划)资助项目(2009CB219704) 高等学校学科创新引智计划("111"计划)(B08013) 华北电力大学博士基金资助项目(200822003)~~
关键词 低频振荡 PRONY方法 窗口滑动 噪声 误差 low frequency oscillation Prony method moving-window noise error
  • 相关文献

参考文献14

  • 1HAUER J F, DEMEURE C J, SCHARF L L. Initial results in Prony analysis of power system response signals. IEEE Trans on Power Systems, 1990, 5(1): 80- 89.
  • 2KORBA P, LARSSON M, REHTANZ C. Detection of oscillations in power systems using Kalman filtering techniques// Proceedings of IEEE Conference on Control Applications: Vol 1, June 23-25, 2003, Istanbul, Turkey. Piscataway, NJ, USA: IEEE, 2003: 183-188.
  • 3王铁强,贺仁睦,徐东杰,王昕伟.Prony算法分析低频振荡的有效性研究[J].中国电力,2001,34(11):38-41. 被引量:75
  • 4薛禹胜,郝思鹏,刘俊勇,Zhaoyang DONG,Gerard LEDWICH.关于低频振荡分析方法的评述[J].电力系统自动化,2009,33(3):1-8. 被引量:82
  • 5GRUND C E, PASERBA J J, HAUER J F, et al. Comparison of Prony and eigen analysis for power system control design. IEEE Trans on Power Systems, 1993, 8(3) : 964-971.
  • 6TRUNDNOWSKI D J. Order reduction of large-scale linear oscillatory system models. IEEE Trans on Power Systems, 1994, 9(1): 451-458.
  • 7KUMARESAN R, TUFTS D W, SCHARF L L. A Prony method for noisy data: choosing the signal components and selecting the order in exponential signal models. Proceedings of the IEEE, 1984, 72(2): 230 -233.
  • 8熊俊杰,邢卫荣,万秋兰.Prony算法的低频振荡主导模式识别[J].东南大学学报(自然科学版),2008,38(1):64-68. 被引量:32
  • 9KUMARESAN R, FENG Y. FIR prefiltering improves Prony's method. IEEE Trans on Signal Processing, 1991, 39(3) : 736-741.
  • 10李大虎,曹一家.基于模糊滤波和Prony算法的低频振荡模式在线辨识方法[J].电力系统自动化,2007,31(1):14-19. 被引量:69

二级参考文献78

共引文献246

同被引文献367

引证文献31

二级引证文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部