期刊文献+

采用多目标随机黑洞粒子群优化算法的环境经济发电调度 被引量:46

Environmental Economic Dispatching Adopting Multiobjective Random Black-hole Particle Swarm Optimization Algorithm
下载PDF
导出
摘要 将多目标随机黑洞粒子群优化(multiobjective random black-hole particle-swarm optimization,MORBHPSO)算法用于解决环境经济发电调度问题,对燃料发电机组相互冲突的燃料费用函数和污染气体排放量函数同时进行优化。提出带等式约束的帕累托占优条件,使生成的帕累托(Pareto)最优解集在解的可行区域,并采用新的"聚类技术"减少解集中解的个数以加快寻优速度。通过变异操作改善解的多样性,并根据"距离评价指标"从帕累托最优前沿(Pareto optimal front,POF)中选择折衷最优解。对IEEE 30节点的标准测试系统进行仿真计算,结果表明该算法在解决环境经济调度问题方面的可行性和有效性,减少了迭代次数,而且在不增加污染气体排放量的同时降低了燃料费用。 Multiobjective random black-hole particle- swarm optimization (MORBHPSO) algorithm is proposed to solve environmental economic dispatching (EED) problems. The conflicting fuel cost and pollutants emissions objective functions of the generation unit are optimized simultaneously. The Pareto dominance condition with the equality constraint is presented to guarantee the feasibility of solutions in the Pareto-optimal set. Due to using a novel clustering technique, the size of the Pareto-optimal set decreases so as to converge fast. Mutation was applied to increase the diversity of the solutions, and the distance evaluation index was developed to select the best compromise solution from the Pareto optimal front (POF). The MORBHPSO algorithm was carried out on a standard IEEE 30-bus test system. The results demonstrate the feasibility and effectiveness of the algorithm for solving EED problems with less iteration, and the fuel cost can be decreased without increasing the pollutants emissions.
作者 刘静 罗先觉
出处 《中国电机工程学报》 EI CSCD 北大核心 2010年第34期105-111,共7页 Proceedings of the CSEE
关键词 发电调度 多目标规划 粒子群优化 环境经济调度 黑洞 帕累托最优 power generation dispatching multiobjective programming particle swarm optimization environmental economic dispatching (EED) black hole Pareto optimality
  • 相关文献

参考文献22

  • 1喻洁,李扬,夏安邦.兼顾环境保护与经济效益的发电调度分布式优化策略[J].中国电机工程学报,2009,29(16):63-68. 被引量:43
  • 2Granelli G P, Montagna M, Pasini G L. Emission constrained dynamic dispatch[J]. Electric Power Systems Research, 1992, 24(1): 55-64.
  • 3Farag A, Albaiyat S, Cheng T C. Economic load dispatch multiobjective optimization procedures using linear-programming techniques [J]. IEEETrans. on Power Systems, 1995, 10(2): 731-738.
  • 4Catalao J P s, Mariano S J P S, Mendes V M F, et al. Short-term scheduling of thermal units: emission constraints and trade-off curves [J]. European Trans. on Electrical Power, 2008, 18(1): 1-14.
  • 5Singh L, Dhillon J S. Secure multi-objective real and reactive power allocation of thermal power units[J]. International Journal of Electrical Power & Energy Systems, 2008, 30(10): 594-602.
  • 6Mandal K K, Chakraborty N. Short-term combined economic emission scheduling of hydrothermal power systems with cascaded reservoirs using differential evolution[J]. Energy Conversion and Management, 2009, 50(1): 97-104.
  • 7Palanichamy C, Babu N S. Analytical solution for combined economic and emissions dispatch[J]. Electric Power Systems Research, 2008, 78(7): 1129-1137.
  • 8Ramanathan R. Emission constrained economic dispatch[J]. IEEE Trans. on Power Systems, 1994, 9(4): 1994-2000.
  • 9Hemamalini S, Simon S P. Emission constrained economic dispatch with valve-point effect using particle swarm optimization[C]//IEEE Region 10 Conference (TENCON 2008). Hyderabad, India: IEEE, 2008: 1-6.
  • 10Abido M A. Multi-objective particle swarm optimization for environmental/economic dispatch problem[J]. Electric Power Systems Research, 2009, 79(7): 1105-1113.

二级参考文献40

共引文献80

同被引文献532

引证文献46

二级引证文献604

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部