期刊文献+

有限容积法与格子Boltzmann方法耦合模拟传热流动问题 被引量:8

Coupling between FVM and LBM for heat transfer and fluid flow problems
原文传递
导出
摘要 自然界和工程领域中的许多物理现象的发生通常涵盖几个数量级的几何空间及时间范围,我们将其统称为多尺度物理现象.在模拟多尺度问题时,如果仅采用宏观方法,则会存在一些不足,如无法预知微小部分的细节以及引入复杂的经验关联式;如果仅采用介观/微观方法,则需要消耗大量的计算资源.构造宏观-介观、宏观-微观、宏观-介观-微观等多种层次上方法的耦合体系,可以在很大程度上克服这些不足.构造了宏观有限容积法(FVM)与介观格子Boltzmann方法(LBM)的耦合模型(CFVLBM),给出了由宏观物理量重构密度分布函数和温度分布函数的两个重构算子,解决了LBM与宏观方法耦合的关键难题.选取二维、三维典型传热流动问题对耦合模型进行了考核,计算结果同基准解符合得很好.最后将CFVLBM应用于计算多孔介质内的复杂流动问题.研究表明,基于文中重构算子的CFVLBM可以准确有效地应用于模拟传热流动问题. Multiscale numerical simulation has been developed very fast in recent years.The convectional numerical approaches always focus on the macroscale and eliminate the effect of meso/microscale process.For complicated problems,some distinct limitations will occur,among whom the lack of detail for some local processes and the necessity of introduction empirical closures are especially obvious.These shortcomings may be overcome if we use meso/microscale methods.But if we use single meso/micro level model on the entire computational domain of a complicated problem,the required computer source is out of reality.By coupling macro/meso scale methods,macro/micro methods or macro/meso/micro methods,such difficulty can be,to a great extent,overcome.In coupling between the FVM and LBM,the key issue is how to effectively transform the macroscopic results of FVM into particle distribution function of LBM,i.e.how to find the reconstruction operator which can perform such transformation efficiently.Two analytic expressions of the reconstruction operators have been proposed for the exchange from density,velocity and temperature of FVM to the distribution functions of LBM.The two reconstruction operators are validated by the 2D,3D heat transfer and fluid flow problems.All of the results are found to be in good agreement with benchmark solutions.At last,the CFVLBM is used to solve a complex flow involving porous media.The results show that the CFVLBM can not only predict the flow pattern in the whole computation domain,but also capture the flow characteristic near the airfoil or in the pore of porous media.
出处 《科学通报》 EI CAS CSCD 北大核心 2010年第32期3128-3140,共13页 Chinese Science Bulletin
基金 国家自然科学基金重点项目资助(50636050)
关键词 有限容积法 格子BOLTZMANN方法 多尺度 耦合 多孔介质 FVM LBM multiscale porous media couple
  • 相关文献

参考文献28

  • 1Weinan E, Engquist B, Li X T, et al. Heterogeneous multiscale methods: A review. Commun Comput Phys, 2007, 44:367--450.
  • 2何国威,夏蒙棼,柯孚久,白以龙.多尺度耦合现象:挑战和机遇[J].自然科学进展,2004,14(2):121-124. 被引量:24
  • 3Tao W Q, He Y L. Recent advances in multiscale simulations of heat transfer and fluid flow problems. Prog Comput Fluid Dyn, 2009, 9: 150-157.
  • 4陶文铨.计算传热学的近代进展.北京:科学出版社,2005
  • 5陶文铨.数值传热学.第2版.西安:西安交通大学出版社,2000.
  • 6Abraham F F. Dynamically spanning the length scales from the quantum to the continuum. Int J Mod Phys C, 2000, 11:1135--1148.
  • 7Nie X B, Chen S Y, E W N, et al. A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow. J Fluid Mech, 2004, 500:55-64.
  • 8Dupuis A, Kotsalis E M, Koumoutsakos P. Coupling lattice Boltzmann and molecular dynamics models for dense fluids. Phys Rev E, 2007, 75:046704.
  • 9Wu J S, Lian X Y, Cheng G, et al. Development and verification of a coupled DSMC-NS scheme using unstructured mesh. J Comput Phys, 2006, 219:579-607.
  • 10Albuquerque P, Alemansi D, Chopard B, et al. Coupling a lattice Boltzmann and finite difference scheme. In: International Conference on Computational Science, Krakow, Poland, 2004.

二级参考文献18

  • 1夏蒙棼,韩闻生,柯孚久,白以龙.统计细观损伤力学和损伤演化诱致突变[J].力学进展,1995,25(1):1-40. 被引量:94
  • 2邢修三.脆性断裂的微观机理和非平衡统计特性[J].力学进展,1986,16:495-495.
  • 3胡英 等.化学化工中结构的多层次和多尺度研究方法[A].香山科学会议主编.科学前沿与未来:第五集[C].北京: 中国环境科学出版社,2002.38.
  • 4SUCCI S. The lattice Boltzmann equation for fluid dy namies and beyond [M]. Oxford, UK: Oxford University Press, 2001.
  • 5ORSZAG S A, CHEN H, SUCCI S, et al. Turbulence effects on kinetic equations [J]. J Sci Comput, 2006, 28(2/3) :459-466.
  • 6CHEN H, KANDASAMY S, ORSZAG S A, et al. Extended Boltzmann kinetic equation for turbulent flows [J]. Science, 2003, 301: 633-636.
  • 7TANG G H, LI Z, WANGJ K, et al. Etectroosmotic flow and mixing in microchannels with the lattice Boltzmann method [J]. J Applied Physics, 2006, 100(9) : 094908-094910.
  • 8TANG G H, TAO W Q, HE Y L. Gas slippage effect on microscale porous flow using the lattice Boltzmann method[J]. Phys Rev: E, 2005, 72(5):056301-056308.
  • 9CAIAZZO A. Analysis of lattice Boltzmann initializa tion routines [J]. J Stat Phys, 2005, 121: 37-48.
  • 10QIAN Y H, D'HUMIERES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation [J]. Europhys Lett, 1992, 17(6): 479-484.

共引文献29

同被引文献37

  • 1杨利明.绿色建筑能耗评价方法及能耗降低新技术探讨[J].制冷技术,2012,32(2):44-47. 被引量:16
  • 2钱吉裕,李强,余凯,宣益民.确定复杂多孔材料有效导热系数的新方法[J].中国科学(E辑),2004,34(11):1247-1255. 被引量:6
  • 3柴立和.多尺度科学的研究进展[J].化学进展,2005,17(2):186-191. 被引量:24
  • 4严微微,刘阳,许友生.用格子Boltzmann研究多孔介质内的自然对流换热问题[J].西安石油大学学报(自然科学版),2007,22(2):149-152. 被引量:8
  • 5NIE Xiaobo, CHEN Shiyi, ROBBINS M O. Hybrid continuum-atomistic simulation of singular corner flow [J]. Physics of Fluids, 2004, 16 (10): 3579- 3591.
  • 6WU J S, LIAN Y Y, CHENG G, et al. Develop- ment and verification of a coupled DSMC-NS scheme using unstructured mesh [J]. Journal of Computation- al Physics,2006, 219(2) :579-607.
  • 7TANG L, JOSHI Y K. A multi-grid based multi-scale thermal analysis approach for combined approach for combined mixed tion due to disc Transfer, 2005, RAMBO J D. R convection, conduction, and radia fete h 127(1) :18-26.
  • 8Journal of Heat educed-order modeling of multiscale turbulent convection: application of data center ther- mal management[D]. Atlanta, USA: Georgia Insti- tute of Technology, 2006.
  • 9OLIVEIRA P J, YOUNIS B A. On the prediction of turbulent flows around full-scale buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2000, 86(2/3): 203-220.
  • 10JUN Kanda. AIJ-RLB-2004 AIJ recommendations for loads on buildings [S]. Japan: Architectural Institute of Japan, 2004.

引证文献8

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部