摘要
在一致光滑Banach空间内引入和研究了一类新的涉及H-η-单调算子的参数广义隐拟似变分包含组.利用H-η-单调算子的豫解算子技巧,研究了参数广义隐拟似变分包含组解集的性质和灵敏性分析.在适当假设下证明了参数广义隐拟似变分包含组的解集是非空闭的和关于参数是Lipschitz连续的.这些结果是新的并且改进和推广了该领域的很多相应已知结果.
In this paper,a new system of parametric generalized implicit quasi-variational-like inclusions in- volving H-η-monotone operators is introduced and studied in uniformly smooth Banach spaces. By using the resolv- ent operator technique of H-η-monotone operators,we study the behavior and sensitivity analysis of solution set of the system of parametric generalized implicit quasi-variational-like inclusions. Under suitable assumptions,we prove that the solution set of the system of parametric generalized implicit quasi-variational-like inclusions is non- empty,closed and Lipschitz continuous with respect to the parameters. Our results are new,and improve and gen- eralize some corresponding known results in this field.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第6期719-729,共11页
Journal of Sichuan Normal University(Natural Science)
基金
四川省教育厅自然科学重点研究基金(SZD0406)资助项目
关键词
灵敏性分析
参数广义隐拟似变分包含组
H-η-单调算子
一致光滑BANACH空间
sensitivity analysis
system of parametric generalized implicit quasi-variational-like inclusions
H- η-monotone operator
uniformly smooth Banach space