期刊文献+

一阶非线性脉冲微分方程边值问题解的存在性 被引量:5

Existence of Solutions for First-order Nonlinear Impulsive Differential Equations with Boundary Value Problems
下载PDF
导出
摘要 利用Schaefer不动点定理,研究了一阶非线性脉冲微分方程边值问题{u'(t)=f(t,u(t)),t∈[0,T]\{tk},k=1,…,m,u(tk+)=u(tk-)+Ik(u(tk)),k=1,…,m,u(0)=βu(T)解的存在性,所得结果推广了已有的结论. In this paper,the existence of solutions for the following nonlinear first order impulsive differential equations with boundary value problems is considered{u'(t) = f(t,u(t)),t ∈[0,T]/{ tk},k = 1,…,m,u(tk+) = u(tk-) + Ik(u(tk)),k = 1,…,m,u(0) = βu(T).New criteria are established based on Schaefer's fixed-point theorem.The results extend some known results.
作者 杨丹丹 李刚
出处 《四川师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期763-767,共5页 Journal of Sichuan Normal University(Natural Science)
基金 国家自然科学基金(10771212)资助项目
关键词 解的存在性 脉冲微分方程 边值问题 Schaefer不动点定理 existence of solutions impulsive differential equations boundary value problems Schaefer's theorem
  • 相关文献

参考文献22

  • 1Lakshmikantham V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations[M].Singapore:World Scientific,1989.
  • 2Liu X.Advances in impulsive differential equations[J].Dynamics of Continuous,Discrete Impulsive System:Mathematical Analysis,2002,A9(3):313-462.
  • 3Liu Y.Further results on periodic boundary value problems for nonlinear first order impulsive functional differential equations[J].J Math Anal Appl,2007,327(1):435-452.
  • 4Rogovchenko Y V.Impulsive evolution systems:main results and new trends[J].Dynamics of Continuous,Discrete Impulsive System:Mathematical Analysis,1997,A3(1):57-88.
  • 5Samoilenko A M,Perestyuk N A.Impulsive Differential Equations[M].Singapore:World Scientific,1995.
  • 6Zavalishchin S T,Sesekin A N.Dynamic Impulse Systems,Theory and Applications[M].Dordrecht:Kluwer Academic Publishers Group,1997.
  • 7Zhang W,Fan M.Periodicity in a generalized ecological competition system governed by impulsive differential equations with delays[J].Math Comput Model,2004,39(4/5):479-493.
  • 8秦发金,邓瑾,姚晓洁.Volterra积分微分方程的正周期解的多解性[J].四川师范大学学报(自然科学版),2008,31(1):65-69. 被引量:5
  • 9徐宏武,李小龙.一类高阶非线性微分方程的正周期解[J].四川师范大学学报(自然科学版),2010,33(2):193-195. 被引量:4
  • 10戴中林.一类高阶非线性微分方程的解法[J].西华师范大学学报(自然科学版),2008,29(1):76-79. 被引量:5

二级参考文献29

共引文献7

同被引文献53

引证文献5

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部