摘要
利用Schaefer不动点定理,研究了一阶非线性脉冲微分方程边值问题{u'(t)=f(t,u(t)),t∈[0,T]\{tk},k=1,…,m,u(tk+)=u(tk-)+Ik(u(tk)),k=1,…,m,u(0)=βu(T)解的存在性,所得结果推广了已有的结论.
In this paper,the existence of solutions for the following nonlinear first order impulsive differential equations with boundary value problems is considered{u'(t) = f(t,u(t)),t ∈[0,T]/{ tk},k = 1,…,m,u(tk+) = u(tk-) + Ik(u(tk)),k = 1,…,m,u(0) = βu(T).New criteria are established based on Schaefer's fixed-point theorem.The results extend some known results.
出处
《四川师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2010年第6期763-767,共5页
Journal of Sichuan Normal University(Natural Science)
基金
国家自然科学基金(10771212)资助项目