期刊文献+

Topological horseshoe in nonlinear Bloch system 被引量:1

Topological horseshoe in nonlinear Bloch system
下载PDF
导出
摘要 This paper demonstrates rigorous chaotic dynamics in nonlinear Bloch system by virtue of topological horseshoe and numerical method. It considers a properly chosen cross section and the corresponding Poincare map, and shows the existence of horseshoe in the Poincare map. In this way, a rigorous verification of chaos in the nonlinear Bloch system is presented. This paper demonstrates rigorous chaotic dynamics in nonlinear Bloch system by virtue of topological horseshoe and numerical method. It considers a properly chosen cross section and the corresponding Poincare map, and shows the existence of horseshoe in the Poincare map. In this way, a rigorous verification of chaos in the nonlinear Bloch system is presented.
作者 樊庆菊
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期105-108,共4页 中国物理B(英文版)
基金 Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010-1a-036)
关键词 Bloch equation CHAOS topological horseshoe Poincare map Bloch equation, chaos, topological horseshoe, Poincare map
  • 相关文献

参考文献15

  • 1Liu C X, Xu Z and Yang T 2010 Acta Phys. Sin. 59 131 (in Chinese).
  • 2Gao T G and Gu Q L 2009 Chin. Phys. B 18 84.
  • 3He H L and Wang G Y 2008 Chin. Phys. B 17 4014.
  • 4Abergel D 2002 Phys. Lett. A 302 17.
  • 5Ghosh D, Chowdhury A R and Saha P 2008 Commun. Nonlinear Sci. Numer. Simul. 13 1461.
  • 6Yang X S and Tang Y 2004 Chaos, Solitions & Fractals 19 841.
  • 7Yang X S 2004 Chaos, Solitons & Fractals 20 1149.
  • 8Yang X S, Li H M and Huang Y 2005 J. Phys. A: Math. Gen. 38 4175.
  • 9Yang X S 2009 Int. J. Bifur. Chaos 19 1127.
  • 10Yang X S, Yu Y G and Zhang S C 2003 Chaos, Solitons & Fractals 18 223.

同被引文献25

  • 1MISCHAIKOW K, MROZEK M. Chaos in the Lorenz equations: a computer-assisted proof[J]. Bulletin of the American Mathematical Society, 1995, 32( 1 ) : 66 -72.
  • 2LI Q, YANG X S, CHEN S. Hyperchaos in a spacecraft power system[J]. International Journal of Bifurcation and Chaos, 2011,21:1719-1726.
  • 3YANG X S. Horseshoe chaos in a simple memristive circuit [J]. International Journal of Bifurcation and Chaos, 2009,19: 1127 - 1145.
  • 4LI Q, YANG X S. Topological horseshoe in a chaotic system with no equilibria[J]. International Journal of Bifurcation and Chaos, 2010, 20:467-478.
  • 5LI C, YU S, LUO X. Theoretical design and circuit implementation of integer domain chaotic systems [J]. International Journal of Bifurcation and Chaos,2013, 23:1350170.
  • 6LI J, LIU F, GUAN Z H. A new chaotic Hopfield neural network and its synthesis via parameter switchings [J]. Neurocomputing, 2013, 117 : 33 - 39.
  • 7SRISUCHINWONG B, AMONCHAILERTRAT N. Realization of a lambert W function for a chaotic circuit [J]. Journal of Circuits, Systems and Computers, 2013 ,22: 1350075.
  • 8LI Q, ZENG H, YANG X S. Simulation of the classical analog phase-locked loop based circuits[J]. Nonlinear Dynamics, 2014, 77 : 255 - 266.
  • 9ZHOU P, YANG F. Hyperchaos chaos and horseshoe in a 4D nonlinear system with an infinite number of equilibrium points [J]. Nonlinear Dynamics, 2014,76 : 473 - 480.
  • 10LI Q D, TANG S, YANG X S. Hyperchaotic set in continuous chaos-hyperchaos transition [J]. Communications in Nonlinear Science and Numerical Simulation, 2014,19 : 3718 - 3734.

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部