期刊文献+

Preferred clusters in metallic glasses

Preferred clusters in metallic glasses
下载PDF
导出
摘要 In this work, we present a feasible scheme based on framework of the sophisticated Voronoi tessellation method in order to evaluate what clusters should be preferred for building blocks in any given metallic glass, by analysing the fivefold-symmetry axes as well as the degree of structural regularity in various clusters. This scheme is well proved by a group of experiments and calculations, which may have broad implications for exploration of obtaining explicit and proper structural pictures, and understanding the structural origin of the unique properties and glass forming ability in these novel amorphous alloys. In this work, we present a feasible scheme based on framework of the sophisticated Voronoi tessellation method in order to evaluate what clusters should be preferred for building blocks in any given metallic glass, by analysing the fivefold-symmetry axes as well as the degree of structural regularity in various clusters. This scheme is well proved by a group of experiments and calculations, which may have broad implications for exploration of obtaining explicit and proper structural pictures, and understanding the structural origin of the unique properties and glass forming ability in these novel amorphous alloys.
作者 杨亮 郭古青
出处 《Chinese Physics B》 SCIE EI CAS CSCD 2010年第12期379-384,共6页 中国物理B(英文版)
基金 Project supported by the National Natural Science Foundation of China (Grant No. 10805027) the Natural Science Foundation of Jiangsu Province of China (Grant No. BK2008397) the Nanjing University of Aeronautics and Astronautics Research Funding,China (Grant No. NS2010168)
关键词 metallic glass synchrotron radiation techniques atomic structure reverse Monte Carlo simulation metallic glass, synchrotron radiation techniques, atomic structure, reverse Monte Carlo simulation
  • 相关文献

参考文献35

  • 1Fenney J L 1977 Nature (London) 266 309.
  • 2Miracle D B 2006 Acta Mater. 54 4317.
  • 3Sheng H W, Luo W K, Alamgir F M, Bai J M and Ma E 2006 Nature (London) 439 419.
  • 4Ma D, Stoica A D, Yang L, Wang X L, Lu Z P, Neuefeind J, Kramer M J, Richardson J W and Proffen T 2007 Appl. Phys. Lett. 90 211908.
  • 5Wang X D, Yin S, Cao Q P, Jiang J Z, Franz H and Jin Z H 2008 Appl. Phys. Lett. 92 011902.
  • 6Zhang J X, Li H, Zhang J, Song X G and Bian X F 2009 Chin. Phys. B 18 4949.
  • 7Du X H and Huang J C 2008 Chin. Phys. B 17 249.
  • 8Wang G H, Pan H, Ke F J, Xia M F and Bai Y L 2008 Chin. Phys. B 17 259.
  • 9Saida J, Matsushita M and Inoue A 2001 Appl. Phys. Lett. 79 412.
  • 10Saksl K, Franz H, Jovari P, Klementev K, Welter E, Ehnes A, Saida J, Inoue A and Jiang J Z 2003 Appl. Phys. Lett. 83 3924.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部