期刊文献+

微通道内电解质溶液离子分布动电学效应模拟 被引量:1

THE SIMULATION OF INFLUENCE OF ELECTROKINETIC EFFECTS ON THE DISTRIBUTION CHARACTERISTIC OF ELECTROLYTE LIQUID IN MICROCHANNEL
原文传递
导出
摘要 动电学效应对微通道内流体流动特性影响很大,其对通道内粒子分布特性的影响使得通道近壁面流体流动特性极不稳定。本文采用分子动力学方法模拟了二维矩形微通道内NaCl稀电解质溶液的流动特性,考虑存在于不同粒子间的Lennard-Jones势能、静电力、以及带电离子与水分子间的相互作用,得到了粒子在通道内的分布特征。结果显示在动电学效应主要作用于通道壁面附近,而主流区域影响极小。Na^+离子在无量纲通道高度达到0.08和0.91时其浓度达到最大值,沿远离壁面其浓度逐渐降低,与壁面电性相反的Cl^-离子则在无量纲通道高度达到0.15和0.84附近浓度最高。其结果与基于连续介质解理论的Boltzamnn统计分布一致。水分子的浓度在壁面附近也较通道中心处高。 Electro-kinetic effects have a great impact on the flow characteristics of fluid in microchannels. The influences of electro-kinetic effects on the particles distribution could result in flow instability near the walls. In this paper, a molecular dynamics (MD) method is used to simulate the flow of the sodium chloride dilute solution in a two-dimension rectangular micro-channel. The Lennard-Jones (L-J) potential energy, Coulomb force and the ion-dipole interaction are taken into account to study the distribution property of the particles in the micro-flow. The simulation results show that electro-kinetic effects are in action significantly near the channel walls but ignorable in the bulk region. The peak concentrations of Na+ ion occur at the position of about 0.91 and 0.08(non-dimensional width), and the peak concentrations of Cl- occur at the position of about 0.84 and 0.15(non-dimensional width).The simulation results are agreement with the Boltzmann statistics based on the continuum medium theory in a certain degree. The concentrations of water near the walls are higher than that in the bulk flow region.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2010年第12期2043-2046,共4页 Journal of Engineering Thermophysics
基金 国家自然科学基金面上项目(No.50676077) 优秀国家重点实验室专项基金项目(No.50823002)
关键词 分子动力学 动电学效应 Lennard-Jones势能 molecular dynamics electro-kinetic effects L-J potential energy
  • 相关文献

参考文献1

二级参考文献28

  • 1S. C. Yang.Effects of surface roughness and interface wettability on nanoscale flow in a nanochannel[J]. Microfluidics and Nanofluidics . 2006 (6)
  • 2A. S. Ziarani,A. A. Mohamad.A molecular dynamics study of perturbed Poiseuille flow in a nanochannel[J]. Microfluidics and Nanofluidics . 2006 (1)
  • 3Jay Taylor,Carolyn L. Ren.Application of continuum mechanics to fluid flow in nanochannels[J]. Microfluidics and Nanofluidics . 2005 (4)
  • 4Probstein R F.Physicochemical Hydrodynamics: An Introduction. . 1994
  • 5Daiguji H,Yang P D,Majumdar A.Ion transport in nanofluidic channels. Nano Letters . 2004
  • 6Karnik R,Fan R,Yue M, et al.Electrostatic control of ions and molecules in nanofluidic transistors. Nano Letters . 2005
  • 7Mitchell M J,,Qiao R,Aluru N R.Meshless analysis of steady-state electro-osmotic transport. Journal of Microbiology . 2000
  • 8Miyamoto S,Kollman P A.SETTLE: An analytical version of the shake and rattle algorithm for rigid water models. The Journal of Chemical Physics . 1992
  • 9Koneshan S,Rasaiah J C,Lynden-Bell R M, et al.Solvent structure, dynamics, and ion mobility in aqueous solution at 25 ℃. Journal of Physical Chemistry B . 1998
  • 10Yeh I,Berkowitz M.Ewald summation for systems with slab geometry. The Journal of Chemical Physics . 1999

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部