期刊文献+

构形树状小通道内的流动沸腾换热特性 被引量:1

FLOW BOILING CHARACTERISTICS IN CONSTRUCTAL TREE-SHAPED MINICHANNEL
原文传递
导出
摘要 本文建立了构形树状小通道内流动沸腾换热模型,数值研究了树状通道网络内的流动沸腾换热特性,并与具有相同换热面积、入口直径的蛇形通道就泵功消耗、流动沸腾压降、通道温度变化和热有效性等指标进行了性能对比分析。研究表明,与蛇形通道相比,构形通道具有流动沸腾压降、泵功消耗小的优势,且其温度均匀性、热有效性也均优于蛇形通道。当热流密度为20 W/cm^2时,构形树状通道内流体的泵功消耗约为蛇形通道的一半,其热有效性为蛇形通道的1.9倍。 The flow boiling characteristics in constrnctal tree-shaped minichannel nets are numerically investigated using a one-dimensional model. The pump power requirement, pressure drop, tempera- ture dli%rence and thermal efficiency of the constructal tree-shaped minichannel are evaluated and compared with those of the corresponding traditional serpentine channel. The results indicated that the flow boiling in constructal tree-shaped minichannnel possesses less pressure drop, lower pumping power requirement, better temperature uniformity and higher thermal efficiency. The pumping power requirement in the constructal tree-shaped minichannel is about half of the corresponding serpentine channel's, and the thermal efficiency is 1.9 times of that in serpentine channel with wall heat flux of 20 W/cm2.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2010年第12期2087-2090,共4页 Journal of Engineering Thermophysics
基金 江苏省自然科学基金(No.BK2008309) 航空科学基金(No.2008ZH69001) 教育部博士学科点专项科研基金(No.20070286072)
关键词 构形 树状通道 两相流 沸腾 constructal tree-shaped channel two phase flow boiling
  • 相关文献

参考文献11

  • 1陈永平,郑平.新型分形树状微通道散热器的实验研究[J].工程热物理学报,2006,27(5):853-855. 被引量:15
  • 2Daniels B J, Pence D V, Liburdy J A. Predictions of Flow Boiling in Fractal-Like Branching Microchannels [R]. ASME International Mechanical Engineering Congress and Exposition, 2005.
  • 3CHEN Yongping, CHENG Ping. Heat Transfer and Pressure Drop in Fractal Tree-Like Microchannel Nets [J]. Int. J. Heat Mass Transf., 2002, 45(13): 2643-2648.
  • 4Mandelbrot B B. The Fractal Geometry of Nature [M]. New York: W H Freeman, 1982.
  • 5Escher W, Michel B, Poulikakos D. Efficiency of Optimized Bifurcating Tree-like and Parallel Microchannel Networks in the Cooling of Electronics [J]. Int. J. Heat Mass Transf., 2009, 52(5/6): 1421-1430.
  • 6Tran T N. Pressure Drop and Heat Transfer Study of Two- Phase Flow in Small Channels [D]. Texas: Tech University, 1998.
  • 7Zivi S M. Estimation of Steady-state Steam Void Fraction by Means of the Principle of Minimum Entropy Production [J]. J. Heat Transfer, 1964, 86:247- 252.
  • 8Lockhart R W, Martinelli R C. Proposed Correlation of Data for Isothermal Two-Phase Two-component Flow in Pipes [J]. Chem. Eng. Progr., 1949, 45(1): 39 -48.
  • 9Chisholm D A. Theoretical Basis for the Lockhart- Martinelli Correlation for Two-Phase Flow [J]. Int. J. Heat Mass Transf., 1967, 10:1767-1778.
  • 10Idelchik I E. Handbook of Hydraulic Resistance [M]. Second ed. Hemisphere, Washington, DC, 1986.

二级参考文献6

  • 1D B Tuckerman,R F W Pease.High-Performance Heat Sinking for VLSI.IEEE Electron Dev.Lett,1981,2(5):126-129
  • 2W Urbanek,J N Zemel,H H Bau.Investigation of the Temperature Dependence of Poiseuille Numbers in Microchannel Flow,J.Micromech.Microeng.,1993,3(4):206-208
  • 3X F Peng,G P Peterson.Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures.Int.J.Heat Mass Transfer,1996,39(12):2599-2608
  • 4B B Mandelbrot.The Fractal Geometry of Nature.New York,Freeman,1982
  • 5Y P Chen,P Cheng.Heat Transfer and Pressure Drop in Fractal Tree-Like Microchannel Nets.Int.J.Heat Mass Transfer,2002,45(13):2643-2648
  • 6H B Ma,G P Peterson.Laminnar Frication Factor in Microscale Ducts of Irregular Cross Section.Microscale Thermophysical Engineering,1997,1(3):253-265

共引文献14

同被引文献2

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部