期刊文献+

一种优化的组合协同过滤算法

An Improved Combining Collaboration Filtering Algorithm
下载PDF
导出
摘要 改进了传统协同过滤算法中最近邻搜索这一关键步骤,提出了一种结合概念层次和用户局部兴趣相似的协同过滤算法,使推荐系统在用户矩阵整体稀疏局部密集时依然能产生较好的推荐.该算法应用于基于iPhone平台开发的EatMe菜肴推荐系统,实验证明改进算法比传统协同过滤算法有更高的查全率. This paper improved on computing neighbor users for active users,which was the crucial step of traditional collaboration filtering algorithm.It proposed a collaboration filtering algorithm combining concept hierarchy and users′ partial similarity so that it could still work on the sparse but partial dense user matrix.This algorithm was applied in EatMe dish recommendation system based on iPhone,and the experimental results showed that the improved algorithm can provide better recall than traditional collaboration filtering algorithm.
出处 《微电子学与计算机》 CSCD 北大核心 2010年第12期102-104,108,共4页 Microelectronics & Computer
关键词 在线推荐系统 协同过滤 概念层次 局部相似性 查全率 online recommendation system collaboration filtering concept hierarchy partial similarity recall
  • 相关文献

参考文献4

二级参考文献17

  • 1邓爱林,左子叶,朱扬勇.基于项目聚类的协同过滤推荐算法[J].小型微型计算机系统,2004,25(9):1665-1670. 被引量:147
  • 2陈健,印鉴.基于影响集的协作过滤推荐算法[J].软件学报,2007,18(7):1685-1694. 被引量:59
  • 3LEE WP, LIU CH, LU CC.Intelligent agent-based systems for personalized recommendations in Internet commerce[A]. Expert Systems with Applications 22[C], 2002.275-284.
  • 4KIM C, KIM J. A Recommendation Algorithm Using Multi-Level Association Rules[A].Proceedings of the IEEE/WIC International Conference on Web Intelligence (WI'03)[C],2003.
  • 5CHO YH, KIM JK, KIM SH.A personalized recommender system based on Web usage mining and decision tree induction[J].Expert Systems with Applications,2002,23(3):329-342.
  • 6.[EB/OL].http://www.cs.umn.edu/Research/GroupLens/index.html[EB/OL],.
  • 7HanJW KamberM.数据挖掘概念与技术[M].机械工业出版社,2001..
  • 8Pazzani M.A Framework for Collaborative,Content-based and Demographic Filtering[J].Artificial Intelligence Review,1999,13(5):393-408.
  • 9Kamahara J,Asakawa T,Shimojo S,et al.A Community-based Recommendation System to Reveal Unexpected Interests[C]//Proc.of the 11th International Multimedia Modeling Conference.Tokyo,Japan:[s.n.],2005:433-438.
  • 10Sarwar B,Karypis G,Konstan J,et al.Analysis of Recommender Algorithms for E-commerce[C]//Proc.of the 2nd ACM E-commerce Conference.Minneapolis,America:Minnesota Press,2000:135-141.

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部