期刊文献+

迟滞混沌神经网络及应用

Neural Network with Hysteretic and Chaotic Characteristics and Its Applications
下载PDF
导出
摘要 提出了一种同时具有迟滞和混沌特性的神经元模型,并利用该模型构造出神经网络,用于求解优化计算等问题。通过在神经元中引入自反馈,使得神经元具有混沌特性。将神经元的激励函数改为具有上升分支和下降分支的迟滞函数,从而将迟滞特性引入神经元和神经网络中。结合模拟退火机制,在优化计算初期,利用混沌特性可提高网络的遍历寻优能力,利用迟滞特性可在一定程度上克服假饱和现象,提高网络的寻优速度。在优化计算末期,网络蜕变为普通的Hopfiled型神经网络,按照梯度寻优方式收敛到某局部最优解。可通过构造能量函数的方法,将图像识别中的特征点匹配等问题转化为优化计算问题,从而可采用该神经网络进行问题求解。仿真结果验证了该方法的有效性。 A neuron model with chaotic and hysteretic characteristic is proposed.Neural network coupled by such neurons is applied to the optimization problem.The self-feedback is introduced into neurons,which makes the neurons have the chaotic characteristic.The activation function has ascending segment and descending segment,which makes the neurons have the hysteresis characteristic.In the initial process of optimization,the ability of ergodicity optimization is enhanced by the chaotic characteristic,and the searching speed is rasied by the hysteresis characteristic.In the terminal process,using the simulated annealing method,the network decay the conventional Hopfield neural network,and convergent to some local optimal solution according to gradient optimization.An appropriate energy function is constructed,and the feature points matching problem can be transformed into optimization problems which can be solved by the neural network.Simulation results show the proposed method effectiveness.
出处 《控制工程》 CSCD 北大核心 2010年第3期300-303,共4页 Control Engineering of China
基金 天津市高等学校科技发展基金资助项目(20060613) 国家自然科学基金资助项目(10402003)
关键词 混沌 迟滞 神经元 神经网络 chaos hysteresis neurons neural network
  • 相关文献

参考文献9

  • 1董超俊,刘智勇.多层混沌神经网络及其在交通量预测中的应用[J].系统仿真学报,2007,19(19):4450-4453. 被引量:24
  • 2YU Ai-Qing GU Xing-Sheng.A Coupled Transiently Chaotic Neural Network Approach for Identical Parallel Machine Scheduling[J].自动化学报,2008,34(6):697-701. 被引量:2
  • 3Thangavel P, Gladis D. Hysteretic hopfield network with dynamic tunneling for crossbar switch and N-queens problem[ J]. Neurocomputing, 2007,70( 13 ) :2544-2551.
  • 4Gopalsamy K, Liu P Z. Dynamics of a hysteretic neuron model [J]. Nonlinear Analysis : Real World Applications, 2007,8 ( 1 ) : 375- 398.
  • 5Dang X J,Tan Y H. RBF neural networks hysteresis modelling for piezoceramic actuator using hybrid model [ J ]. Mechanical Systems and Signal Processing, 2007,21 ( 1 ) : 430-440.
  • 6Zhao X L, Tan Y H. Neural network based identification of Preisach-type hysteresis in piezoelectric actuator using hysteretic operator [J]. Sensors and Actuators A: Physical, 2006, 126 (2): 306- 311.
  • 7Li C T,Tan Y H. A neural networks model for hysteresis nonlinearity [J].Sensors and Actuators A : Physical, 2004, 112( 1 ) : 49-54.
  • 8Hopfield J J, Tank D W. Neural computation of decision in optimization problem [ J ]. Biological Cybernetics, 1985, 52 ( 3 ) : 141- 152.
  • 9Nasrabadi N M, Choo C Y. Hopfield network for stereovision correspondence[J]. IEEE Trans on Neural Network, 1992,3( 1 ) :5- 13.

二级参考文献26

  • 1董超俊,刘智勇,邱祖廉.基于混沌遗传算法的区域交通计算机控制配时优化[J].计算机工程与应用,2004,40(29):32-34. 被引量:9
  • 2董超俊,刘智勇,邱祖廉.城市交通控制智能优化配时及仿真[J].系统仿真学报,2005,17(2):472-475. 被引量:7
  • 3董超俊,刘智勇,刘贤坤.基于粗糙集的区域交通控制交通量属性约简[J].系统仿真学报,2006,18(6):1524-1528. 被引量:7
  • 4程广平,汪波.基于神经网络的混沌系统状态预测[J].系统仿真学报,2007,19(5):1173-1175. 被引量:11
  • 5Ceylan Halim,Bell Michael G H.Traffic signal timing optimization based on genetic algorithm approach,including drivers' routing[J].Transportation Research Part B (S0191-2615),2004,38(4):329-342.
  • 6Dougherty M,Cobbett M.Short-term inter-urban traffic forecasts using neural networks[J].International Journal of Forecasting (S0169-2070),1997,13:21-31.
  • 7Yin H B,Wong S C,Xu J M,et al.Urban traffic flow prediction using a fuzzy-neural approach[J].Transportation Research Part C (S0968-090X),2002,10(1):85-98.
  • 8Qiao F X,Yang H,William H K L.Intelligent simulation and prediction of traffic flow dispersion[J].Transportation Research Part B (S0191-2615),2001,35(4):843-863.
  • 9Xiaomo Jiang,Adeli Hojjat.Dynamic Wavelet Neural Network Model for Traffic Flow Forecasting[J].Journal of Transportation Engineering (S0733-947X),2005,31(10):771-779.
  • 10Alarcon-Aquino Vicente,Barria Javier A.Multiresolution FIR Neural-Network-Based Learning Algorithm Applied to Network Traffic Prediction[J].IEEE Transactions on Systems,Man & Cybernetics:Part C-Applications & Reviews (S1094-6977),2006,36(2):208-220.

共引文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部