期刊文献+

传感器标定的神经网络杂交建模方法 被引量:10

Neural Network Hybrid Modeling Method For Transducer Calibration
下载PDF
导出
摘要 传感器标定是工程测试中的一个重要环节,直接影响测试结果的精度及可靠性。当被测物理量与传感器输出信号间的关系包含复杂、未知的非线性特性时,传统的标定方法难以达到满意的精度。引入神经网络杂交建模的思想,提出传感器标定的神经网络杂交建模方法,阐明建模过程和步骤。分别以单输入单输出和多输入多输出传感器为例,进行杂交建模标定的仿真研究,并对一个6维力传感器样机完成了神经网络杂交建模试验标定。仿真与试验结果表明,与传统的标定方法相比,神经网络杂交建模方法能够显著提高传感器的标定精度,同时比神经网络黑箱建模方法具有更小的网络规模和更快的收敛速度,且精度高,泛化推广能力强。 The transducer calibration is a key link in engineering test tasks and has significant influence on accuracy and reliability of test results.When input-output relationships of transducers contain unknown and complex nonlinear characteristics,the conventional calibration method can hardly achieve satisfactory accuracy.A neural network(NN) hybrid modeling approach is proposed and applied to transducer calibration.The modeling procedures are also presented in detail.The simulated studies on the calibration of single output and multiple output transducers are conducted respectively by use of the developed hybrid modeling scheme.The NN hybrid modeling approach is utilized to calibrate a six-dimensional force sensor prototype based on the measured data obtained from calibration tests.The simulated and experimental results show that the NN hybrid modeling approach can improve significantly calibration precision in comparison with traditional calibration methods.In addition,the NN hybrid modeling is superior to NN black box modeling because the former possesses smaller network scale,higher convergence speed,higher calibration precision and better generalization performance.
出处 《机械工程学报》 EI CAS CSCD 北大核心 2010年第22期6-15,共10页 Journal of Mechanical Engineering
基金 国家自然科学基金(10772142 10476020) 国家自然科学基金重点(10832002)资助项目
关键词 传感器 标定 神经网络 杂交建模 Transducer Calibration Neural network Hybrid modeling
  • 相关文献

参考文献17

  • 1贺德馨.风洞天_甲[M].北京:国防工业出版社,2001.
  • 2付尧明,王强,额日其太,仇畔祥,熊章荣.矢量喷管六分量测力试验台的研制[J].流体力学实验与测量,2002,16(1):87-93. 被引量:15
  • 3白静,解亚军,高超.铰链力矩天平校准系统的设计与天平校准[C]//中国空气动力学会测控技术专业委员会第五届五次学术会议论文集.武汉:江汉大学,2009:338-342.
  • 4尹伟,李华星.压力传感器静态校准模型研究[J].测控技术,2006,25(4):20-25. 被引量:4
  • 5姜淑娟,刘伟军,南亮亮.基于神经网络的激光熔覆高度预测[J].机械工程学报,2009,45(3):269-274. 被引量:31
  • 6PLOEMEN I H J, MOLENGRAFT M J G. Hybrid modeling for mechanical systems: Methodologies and applications[J]. ASME Journal of Dynamic Systems, Measurement, and Controh 1999, 121(2): 270-277.
  • 7OUSSAR Y, DREYFUS G. How to be a gray box: Dynamic semi-physical modeling[J]. Neural Networks, 2001, 14: 1161-1172.
  • 8CAO M, WANG K W. A hybrid neural network approach for the development of friction component dynamic model[J]. Journal of Dynamic Systems, Measurement, and Control, 2004, 126(3): 144-153.
  • 9CAO M, WANG K W, FUJII Y, et al. Advanced Hybrid Neural network AHNN automotive friction component model for powertrain system dynamic analysis, Part 1:Model development[J]. Proc. Inst. Mech. Eng., Part D J. Automob. Eng., 2004, 218(8): 831-843.
  • 10ZHOU Chungui, ZHANG Xinong, XIE Shilin, et al. Hybrid modeling of wire cable vibration isolation system through neural network[J]. Mathematics and Computers in Simulation, 2009, 79(10): 3160-3173.

二级参考文献37

共引文献113

同被引文献94

引证文献10

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部