期刊文献+

无监督Eidos表相盒中脑状态人工神经元网络模型参数优化选取 被引量:1

Parameter optimization in Eidos brain-state-in-a-box artificial neural network model
下载PDF
导出
摘要 本文研究了无监督表相盒中脑状态(EidosBSB)人工神经元网络模型的参数优化选取问题.通过对模型连接矩阵的特征值进行深入分析,发现网络分类能力取决于有效特征值的平稳性和区别性.提出采用有效特征值均值与其他特征值均值的比,作为参数优化选取的依据,给出了选取最优参数的具体方法.仿真结果表明,经参数优化选取后的EidosBSB模型与原始EidosBSB模型相比,能够获得更强的噪声适应能力,更好的分类性能.参数优化后的网络对噪声污染率为100%的输入样本的平均识别概率达94%以上. The parameter optimization for the Eidos brain-state-in-a-box(Eidos BSB) artificial neural network model is considered. By an in-depth analysis to the eigenvalues of the model-connected matrix, it can be found that the network's classification ability relies on the stability and distinction of the valid eigenvalues. Thereby, a novel parameter optimization technique is proposed, which is based on the ratio of the valid eigenvalues' mean to the others. Then, the details of this parameter optimization method are presented. According to the simulation results, this optimized Eidos BSB model is immune to noise and provides better classification results. More than 94% correct classification rate can be attained for the samples with 100% noise contamination rate by employing this optimized neural network.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第3期373-376,共4页 Control Theory & Applications
基金 国家自然科学基金资助项目(60572108) 南京航空航天大学青年教师基金资助项目(Y0618-041)
关键词 盒中脑 无监督表相盒中脑状态 参数优化 brain-state-in-a-box Eidos BSB parameter optimization
  • 相关文献

参考文献1

二级参考文献9

  • 1魏海坤,宋文忠,李奇.非线性系统RBF网在线建模的资源优化网络方法[J].自动化学报,2005,31(6):970-974. 被引量:6
  • 2HAYKIN S.Neural Networks:A Comprehensive Foundation[M].New York,NY:Prentice Hall,1997.
  • 3KARAYIANNIS N,RANDOLPH-GIPS M.On the construction and training of reformulated radial basis function neural networks[J].IEEE Trans Neural Networks,2003,14(4):835-846.
  • 4PLATT J.A resource-allocating network for function interpolation[J].Neural Computation,1991,3(2):213-225.
  • 5YINGWEI L,SUNDARARAJAN N,SARATCHANDRAN P.A sequential learning scheme for function approximation and using minimal radial basis neural networks[J].Neural Computation,1997,9(2):1-18.
  • 6MICCHELLI C.Interpolation of scattered data:distance matrices and conditionally positive definite functions[J].Constructive Approximation,1986,2(1):11-22.
  • 7WEI H,AMARI S.Online learning dynamics of radial basis function neural networks near the singularity[C]//Proc of Int Joint Conf on Neural Networks.New York,USA:IEEE Press,2006:4770-4776.
  • 8AMARI S,PARK H,OZEKI T.Singularities affect dynamics of learning in neuromanifolds[J].Neural Computation,2006,18(5):1007-1065.
  • 9魏海坤,徐嗣鑫,宋文忠.神经网络的泛化理论和泛化方法[J].自动化学报,2001,27(6):806-815. 被引量:97

共引文献12

同被引文献13

  • 1王壮,樊昀,王成,康少单,孙兆林,胡卫东,郁文贤.基于星载电子侦察与成像侦察的数据融合技术[J].电子学报,2003,31(z1):2127-2130. 被引量:13
  • 2BEGIN J,PROULX R.Categorization in unsupervised neural networks:the Eidos model[J].IEEE Trans.on Neural Networks,1996,7(1):147-154.
  • 3ANDERSON J A,GATELY M T,PENZ P A,et al.Radar signal categorization using a neural network[C] //Proceedings of the IEEE.Providence,USA:Brown Univ.,1990,78(10):1646-1657.
  • 4MARDIA H K.New techniques for the deinterleaving of repetitive sequences[C] // IEEE proceedings on Radar and Signal Processing.Shipley,UK:Filtronic Components Ltd.,1989,136(4):149-154.
  • 5MILOJEVIC D J.Improved algorithm for the deinterleaving of radar pulses[C] //IEEE proceedings on Radar and Signal Processing.Beograd:Institute of Microwave Tenchn.& Electron.,1992,139(1):98-104.
  • 6ANDERSON J A,SILVERSTEIN J W,RITZ S A,et al.Distinctive features,categorical perception and probability learning:some applications of a neural model[M].Cambridge,MA:MIT Press,1988:283-325.
  • 7HUI S,ZAK S H.Dynamical analysis of the brain-state-in-a-box (BSB) neural models[J].IEEE Trans.on Neural Networks,1992,3(1):86-94.
  • 8LILLO W E,MILLER D C,HUI S,et al.Synthesis of brain-state-in-a-box (BSB) based associative memories[J].IEEE Trans.on Neural Networks,1994,5(5):730-737.
  • 9QIAO Hong,PENG Ji-gen,XU Zong-ben,et al.A reference model approach to stability analysis of neural networks[J].IEEE Trans.on Systems,Man and Cyber-netics:Part B,2003,33(6):925-936.
  • 10BOUKADOUM A M,LAMRANI J.Performance improvement of the BSB-Eidos neural network[C] // Canadian Conference on Electrical and Computer Engineering.Montreal,Canada:Quebec University,1994,2:718-721.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部