期刊文献+

季节性时间序列预测方法选择 被引量:2

Time series forecasting methods selection for seasonal data
下载PDF
导出
摘要 现实生活中大部分的经济数据不仅会随着时间的推移显示出一定的长期趋势,往往还会因为季节性因素而呈现出周期变化,因此,对于这种既具有倾向性变动趋势又有季节性变动的时间序列的预测就成为了统计预测的重要内容之一。因为预测方法选择的多样性,主要讨论温特线性与季节性指数平滑法,自适应过滤法和ARIMA模型拟合法这3种重要且比较典型的预测方法,通过比较3种方法的优劣,有助于在实际预测中预测方法的正确选择。 In reality,most economic data will show certain long-term trends as time goes by,and exhibit periodical changes affected by seasonal factors.As an important focus of statistical prediction,it is very necessary to study and predict such time series with tendency and seasonality.Although there are many statistical prediction methods available,this paper mainly discusses three important and typical ones,Winters linear and seasonal exponential smoothing,adaptive filtering model,and ARIMA model.The purpose of this paper is to help choose the right method by comparing advantages and disadvantages of these methods in actual predictions.
作者 郑淦文
出处 《齐齐哈尔大学学报(自然科学版)》 2010年第6期90-94,共5页 Journal of Qiqihar University(Natural Science Edition)
关键词 倾向性和季节性 温特线性与季节性指数平滑法 自适应过滤法 ARIMA模型 tendency and seasonality winters linear and seasonal exponential smoothing adaptive filtering model ARIMA model
  • 相关文献

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部