摘要
考虑一类二阶泛函微分方程:(r(t)ψ(x(t))φ(x′(t)))′+p(t)φ(x′(t))+f(t,x(t),x(τ(t)),x′(t),x′(τ(t)))=0。其中,r,τ∈C([t0,∞),(0,∞)),limt→∞τ(t)=∞,ψ∈C(R,R),φ(u)=|u|α-1u,α为大于零的常数,p∈C([t0,∞),R),f∈C([t0,∞)×R4,R),t0>0,通过构造适当的Riccati变换,并利用积分平均方法及完全平方技术,得到了方程的解振动的一些新的充分条件,推广了相关文献的结果。
The second order functional differential equation of the form(r(t)ψ(x(t))φ(x'(t)))'+p(t)φ(x'(t))+f(t,x(t),x(τ(t)),x'(t),x'(τ(t)))=0 is considered,where r,τ∈C([t0,∞),(0,∞)),limt→∞τ(t)=∞,ψ∈C(R,R)φ(u)=-u-α-1u,α is a conatant more than zero,p∈C([t0,∞),R),f∈C([t0,∞)×R4,R),t0>0.By using generalized Riccati transformation,some new sufficient conditions for solutions of the equation to oscillate are obtained through the method of integral average and perfect square.The results improve some of the known results in the literature.
出处
《长江大学学报(自科版)(上旬)》
CAS
2010年第3期430-431,共2页
JOURNAL OF YANGTZE UNIVERSITY (NATURAL SCIENCE EDITION) SCI & ENG
关键词
泛函微分方程
二阶
区间振动
functional differential equation
second order
interval oscillation