期刊文献+

树形频繁模式的挖掘及可视化技术研究

Research on techniques of mining and visualizing frequent patterns based on tree structure
下载PDF
导出
摘要 频繁项集的挖掘不仅仅是关联规则挖掘的基础,而且在序列模式、聚类、多维模式等数据挖掘任务中扮演重要角色.本文在给出一个基于数据垂直分布的频繁项集挖掘算法HBMFP的基础上,论述了利用MFC中的树视图控件(CTreeCtrl)将频繁项集树形可视化,并讨论了基于该频繁模式树的3种约束频繁项集查询的方法. Mining of frequent itemsets is not only a fundamental problem for mining association rules,but also plays an improtant role in other data mining rasks such as sequential patterns,clusters,multidimensional patterns,etc.Based on the analysis of the vertical format-based frequent pattern mining algorithm HBMFP,in particular this paper visualizes the frequent patterns making use of CtreeCtrl in MFC.Discussing the three methods of querying of constraind frequent itemsets based on the frequent pattern tree.
作者 胡相峰 乔梅
出处 《天津理工大学学报》 2010年第5期61-64,共4页 Journal of Tianjin University of Technology
关键词 频繁项集 关联矩阵 树状图控件 关联规则 frequent itemsets incidence matrix CtreeCtrl association rules
  • 相关文献

参考文献4

二级参考文献37

  • 1Wang J, Chirn G, Marr T, Shapiro B, Shasha D,Zhang K. Combinatorial pattern discovery for scientific data: Some preliminary results. In Proc. 1994 ACM-SIGMOD Int. Conf. Management of Data(SIGMOD'94), Minneapolis, MN, May, 1994, pp.115-125.
  • 2Bettini C, Wang X S, Jajodia S. Mining temporal relationships with multiple granularities in time sequences.Data Engineering Bulletin, 1998, 21: 32-38.
  • 3Zaki M J. Efficient enumeration of frequent sequences.In Proc. 7th Int. Conf. Information and Knowledge Management (CIKM'98), Washington D.C., Nov. 1998,pp.68-75.
  • 4Masseglia F, Cathala F, Poncelet P. The psp approach for mining sequential patterns. In Proc. 1998 European Symp. Principle of Data Mining and Knowledge Discovery (PKDD'98), Nantes, France, Sept. 1998, pp.176-184.
  • 5Lu H, Han J, Feng L. Stock movement and n-dimensional inter-transaction association rules. In Proc.1998 SIGMOD Workshop Research Issues on Data Mining and Knowledge Discovery (DMKD'98), Seattle,WA, June 1998, pp.12:1-12:7.
  • 6Agrawal R, Srikant R. Mining sequential patterns. In Proc. 1995 Int. Conf. Data Engineering (ICDE'95),Taipei, Taiwan, Mar. 1995, pp.3-14.
  • 7Srikant R, Agrawal R. Mining sequential patterns:Generalizations and performance improvements. In Proc. 5th Int. Conf. Extending Database Technology(EDBT'96), Avignon, France, Mar. 1996, pp.3-17.
  • 8Mannila H, Toivonen H, Verkamo A I. Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1997, 1: 259-289.
  • 9Ozden B, Ramaswamy S, Silberschatz A. Cyclic association rules. In Proc. 1998 Int. Conf. Data Engineering(ICDE'98), Orlando, FL, Feb. 1998, pp.412-421.
  • 10Han J, Dong G, Yin Y. Efficient mining of partial periodic patterns in time series database. In Proc. 1999 Int.Conf. Data Engineering (ICDE'99), Sydney, Australia,April 1999, pp.106-115.

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部