期刊文献+

基于概率神经网络的高压加热器故障诊断及仿真 被引量:4

Fault Diagnosis and Simulation for High-pressure Heaters Based on Probabilistic Neural Network
下载PDF
导出
摘要 针对汽轮发电机组高压加热器发生的故障问题,提出了一种基于概率神经网络(PNN)的故障诊断方法。通过对该设备故障的定性分析,对比研究了PNN与误差反向传播神经网络(BPNN)分类模型对故障的分类效果。仿真表明,对高压加热器的故障分类中,在分类速度、精确度等方面,PNN模型均优于BPNN分类模型。 In order to solve the problem encountered by a turbine-generator's high-pressure heater,a fault diagnosis method based on PNN(probabilistic neural network) was proposed.By qualitatively analyzing the equipment fault,a comparison was made between classification results obtained respectively with PNN and BPNN(back-propagation neural network) models.Simulation results show that for fault diagnosis of high-pressure heaters,PNN model is better than BPNN in the aspect of classification speed and precision.
出处 《发电设备》 2010年第2期97-100,共4页 Power Equipment
关键词 火电厂 高压加热器 故障诊断 模式分类 thermal power plant high-pressure heater fault diagnosis model classification
  • 相关文献

参考文献4

二级参考文献11

共引文献55

同被引文献32

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部