期刊文献+

胞外初始底物浓度对产氢光合细菌葡萄糖跨膜传输及代谢的影响 被引量:2

Effect of Initial Glucose Concentration on Glucose Transmembrane Transportation and Metabolism of Hydrogen-Producing Photosynthetic Bacteria
原文传递
导出
摘要 对产氢光合细菌葡萄糖跨膜传输速率、葡萄糖酶酵解速率进行了实验研究,对胞内葡萄糖浓度、葡萄糖传输渗透系数进行了计算.实验结果表明,胞外初始底物浓度为50~100mmol/L时,葡萄糖传输速率、胞内葡萄糖浓度总体都随胞外初始底物浓度的增大而增大,但胞外初始底物浓度增大至150mmol/L时,对葡萄糖跨膜传输产生了限制作用,葡萄糖传输速率和胞内葡萄糖浓度均相应减小;计算得到胞内葡萄糖浓度最小值为0.34mmol/L,最大为5.87mmol/L;初始底物浓度为15~35mmol/L时,细胞破碎液葡萄糖酶酵解速率随底物浓度的增大而增大;胞外初始底物浓度为50~150mmol/L时,葡萄糖代谢速率受葡萄糖传输速率控制,产氢光合细菌葡萄糖平均渗透系数为231.13cm3h-1g(DW)-1,葡萄糖传输速率主要受胞内外葡萄糖浓度势差控制;75mmol/L为较有利于葡萄糖跨膜传输的最佳胞外初始底物浓度. The glucose transmembrane transportation rate and glucose glycolysis rate of hydrogen-producing photosynthetic bacteria were investigated,and the intracellular glucose concentration and permeability coefficient of glucose transportation were calculated in this study.The experimental results showed that both the glucose transportation rate and intracellular glucose concentration increased with increasing of extracellular initial glucose concentration which ranged between 50~100 mmol/L,while decreased due to glucose transport limitation when the extracellular initial glucose concentration further increased to 150 mmol/L.The minimum and maximum intracellular glucose concentrations in the experiments were 0.34 mmol/L and 5.87 mmol/L,respectively.For the extracellular initial concentration with a range between 50 and 150 mmol/L,the glucose metabolism rate of the photosynthetic bacteria was controlled by the glucose transport process where the average glucose permeability coefficient was 231.13 cm^3 h^-1 g(DW)^-1.It was found that 75 mmol/L was the best extracellular initial glucose concentration for the glucose transmembrane transportation process.Fig 5,Ref 11
出处 《应用与环境生物学报》 CAS CSCD 北大核心 2010年第2期264-268,共5页 Chinese Journal of Applied and Environmental Biology
基金 国家自然科学基金项目(Nos.90510020 50576107 20876183 50825602)资助~~
关键词 产氢光合细菌 胞内葡萄糖浓度 葡萄糖传输速率 葡萄糖酶酵解速率 葡萄糖渗透系数 hydrogen-producing photosynthetic bacterium intracellular glucose concentration glucose transportation rate glucose glycolysis rate glucose permeability coefficient
  • 相关文献

参考文献10

  • 1Levin DB, Pitt L, Love M. Biohydrogen production: Prospects and limitations to practical application. Intern J Hydrogen Energy, 2004, 29 (2): 173-185.
  • 2Das D, Veziroglu TN. Hydrogen production by biological processes: A survey of literature. Intern J Hydrogen Energy, 2001, 26 (1): 13-28.
  • 3Eroglu I, Aslan K, Gunduz U, Yucel M, Turker L. Substrate consumption rates for hydrogen production by Rhodobacter sphaeroides in a column photobioreactor. J Biotechnol, 1999, 70 (1-3): 103 -113.
  • 4Vrabl P, Mutschlechner W, Burgstaller W. Characteristics of glucose uptake by glucose-NH4-limited grown Penicillium ochrochloron at low, medium and high glucose concentration. Fungal Genetics & Biol, 2008, 45 (10): 1380-1392.
  • 5Rizzi M, Theobald U, Querfurth E, Rohrhirsch T, Baltes M, Reuss M. In vivo investigations of glucose transport in Saccharomyces cerevisiae. Biotechnol & Bioengin, 1996, 49 (3): 316-327.
  • 6Kotyk A, Kleinzeller A. Transport of D-xylose and sugar space in baker’s yeast. Folia Microbiol, 1963, 8 (3): 156-161.
  • 7Wilkins PO, Cirill VP. Sorbose counterflow as a measure of intracellular glucose in baker’s yeast. J Bacteriol, 1965, 90 (6): 1605-1610.
  • 8Wayman FM, Mattey M, Simple diffusion is the primary mechanism for glucose uptake during the production phase of the Aspergillus niger citric acid process. Biotechnol & Bioengin, 1999, 67 (4): 451-456.
  • 9Papagianni M, Mattey M. Modeling the mechanisms of glucose transport through the cell membrane of Aspergillus niger in submerged citric acid fermentation processes. Biochem Engin J, 2004, 20 (1): 7-12.
  • 10Wang YZ (王永忠). Characteristics of mass transfer and hydrogen production of photo-bioreactor with immobilized photosynthetic bacteria: [Doctor’s Degree Dissertation]. Chongqing, China: Chongqing University (重庆: 重庆大学), 2008. 28-31.

同被引文献55

  • 1Deinum G, Otte SCM, Gardiner AT, Aartsma TJ, Cogdell RJ, Amesz J. Antenna organisation of Rhodopseudomonas acidophila: A study of the excitation migration. Biochim Biophys Acta, 1991, 1060: 125-131.
  • 2Freer A, Prince S, Sauer K, Papiz M, Lawless A H, McDermott G, Cogdell R, Isaacs NW. Pigment protein interactions and energy transfer in the antenna complex of the photosynthetic bacterium Rhodopseudomonas acidophila. Structure, 1996, 4: 449-462.
  • 3Willett J, Smart JL, Bauer CE. RegA control of bacteriochlorophyll and carotenoid synthesis in Rhodobacter capsulatus. J Bacteriol, 2007, 189 (21): 7765-7773.
  • 4Iustman LJ, Pucheu NL, Kerber NL, Vandekerckhove J, Tadros MH, Garcia AF. Phosphorylation of LHI ? during membrane synthesis in the photosynthetic bacterium Rhodovulum sulfidophilum. Current Microbiol, 2001, 42: 323-329.
  • 5Schubert A , Stenstam A, Beenken WJD, Herek JL, Cogdell R, Pullerits T, Sundstrom V. In vitro self-assembly of the light harvesting pigment-protein LH2 revealed by ultrafast spectroscopy and electron microscopy. Biophys J, 2004, 86: 2363-2373.
  • 6Herek JL, Fraser N J, Pullerits T, Martinsson P, Polívka T, Scheer H, Cogdell RJ, Sundstr?m V. B800 -> B850 energy transfer mechanism in bacterial LH2 complexes investigated by B800 pigment exchange. Biophys J, 2000, 78: 2590-2596.
  • 7Fowler GJS, Visschers RW, Grief GG, van Grondeller R, Hunter CN. Genetically modified photosynthetic antenna complexes with blue-shifted absorbance bands. Nature, 1992, 355: 848-850.
  • 8Saga Y, Tamiaki H. Transmission electron microscopic study on supramolecular nanostructures of bacteriochlorophyll self-aggregates in chlorosomes of green photosynthetic bacteria. J Biosci & Bbioeng, 2006, 102: 118-123.
  • 9Masuda S, Tomida Y, Ohta H, Takamiya K. The critical role of a hydrogen bond between Gln63 and Trp104 in the blue-light sensing BLUFdomain that controls AppA activity. J Mol Biol, 2007, 368 (5): 1223-1230.
  • 10Han Y, Braatsch S, Osterloh L, Klug G. A eukaryotic BLUF domain mediates light-dependent gene expression in the purple bacterium Rhodobacter sphaeroides 2.4.1. Proc Nat Acad Sci, 2004, 101: 12306-12311.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部