摘要
为了进一步整合线性代数的内容,利用分块矩阵与λ-多项式理论对子块为矩阵多项式的矩阵的秩进行系统的论述.得到的主要结论:设B(λ)∈F[λ]s×t,A∈F n×n,则rank(B(A))=rank(h1(A))++rank(hr(A)),其中:r=rank(B(λ));h1(λ),,hr(λ)∈F[λ]为任意非零多项式,且h1(λ),,hr(λ)的标准分解式中不可约因子的方幂构成B(λ)的全部初等因子.
In order to further integrate the content of linear algebra,revealed the rank of partitioned λ-matrices,in which every sub-block is matrix polynomial,using partitioned matrix andλ-polynomial theory.The main conclusion is that ifB(λ)∈F [λ ] s ×t,A∈F n ×n,thenrank(B(A))=rank(h1(A))+ +rank(hr(A)).Where r=rank(B(λ)),h1(λ),,hr(λ) ∈ F [λ] are any non-zero polynomial with the following properties that the powers of irreducible divisors in the canonical form of h1(λ),,hr(λ) constitute all the elementary divisors ofB(λ).
出处
《高师理科学刊》
2010年第5期16-18,共3页
Journal of Science of Teachers'College and University
基金
黑龙江省高教学会"十一五"规划项目(115C-580)
关键词
矩阵的秩
Λ-矩阵
不变因子
初等因子
rank of matrix
λ-matrix
invariant factor
elementary divisor