期刊文献+

用Adomian分解法求带有分数阶导数的加热一般第二级流体的Stokes第一类问题

An Approximate Solution for the Stokes' First Problem for a Heated Generalized Second Grade Fluid with Fractional Derivative by Using the Adomian Decomposition Method
下载PDF
导出
摘要 考虑一般第二级流体的Stokes第一类问题。为了描述这样一个流体,在基本关系模型里引进分数阶微积分学方法。但是,有效地求解分数阶加热一般第二级流体的Stokes第一类问题(简写为SFP-HGSGF)的方法仍然不多。在此利用Adomian分解方法构造近似解。最后用一些数值例子来说明此方法的有效性、可靠性和简单性。 The Stokes' first problem fora generalized second grade fluid was investigated.To describe such a fluid,fractional calculus approach in the constitutive relationship model was used.However,there are not many effective methods for the Stokes' first problem for a heated generalized second grade fluid with fractional derivative(SFP-HGSGF).In this paper,Adomian decomposition method was used to construct the approximate solution.Some examples are presented to show the efficiency,reliability and simplicity of the method.
作者 张志敏
出处 《三明学院学报》 2010年第4期317-322,共6页 Journal of Sanming University
关键词 一般第二级流体 分数阶计算 Stokes第一类问题 ADOMIAN分解方法 generalized second grade fluid fractional calculus Stokes'first problem Adomian decomposition method.
  • 相关文献

参考文献33

  • 1PODLUBNY I. Fractional differential equations[M]. New York:Academic Press, 1999.
  • 2BAGLEY R. L. A theoretical basis for the application of fractional calculus to viscoelasticity[J].Journal of R.heology, 1983(27):201 - 210.
  • 3FRIEDRACH C H R. Relaxation and retardation function of the Maxwell model with fractional derivatives [J].Rheologica Acta, 1991(30): 151 - 158.
  • 4TAN WC, PAN WX, XU MY. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates [J]. International Journal of Non-Linear Mechanics, 2003(38): 645 - 650.
  • 5TAN WC, MASUOKA T. Stokes' first problem for a second grade fluid in a porous half-space with heated boundary [J]. International Journal of Non-Linear Mechanics,2005(40):515 - 522.
  • 6TAN WC, MASUOKA T. Stokes' first problem for an Olclroyd-B fluid in a porous half-space [J]. Physics of Fluid, 2005(17): 1-7.
  • 7ZIEREP J. Das R.ayleigh - Stokes problem fur die Ecke[J]. Acta Mechanica,1979(34):161 - 165.
  • 8TAIPEL I.The impulsive motion of a flat plate in a viscoelasitic fluid[J].Acta Mechanica,1981(39):277 - 279.
  • 9BANDELLI R, RAJAGOPAL K R..Start-up flows of second grade fluids in domains with one finite dimension [J]. International Journal of Non-Linear Mechanics,1995 (30):817 - 839.
  • 10RAJAGOPAL K R.On the decay of vortices in a second grade fluid[J].Meccanica, 1980(9):185 - 188.

二级参考文献18

  • 1Podlubny I.Fractional differential equations[M].New York:Academic Press,1999.
  • 2Metzler R,Klafter J.The random walk's guide to anomalous diffusion:a fractional dynamics approach[J].Physics Reports,2000,339:1-77.
  • 3Yuste S B,Lindenberg K.Subdiffusion limited A+A reactions[J].Phys Rev Lett,2001,87(11):118-301.
  • 4Yuste S B,Lindenberg K.Subdiffusion-limited reactions[J].Chem Phys,2002,284:169-180.
  • 5Meerschaert M M,Benson D A,Bumer B.Multidimensional advection and fractional dispersion[J].Physical Review E,1999,59:5026-5028.
  • 6Meerschaert M M,Benson D A,Scheffler H P,et al.Stochastic solution of space-time fractional diffusion equations[J].Physical Review E,2002,65:1103-1106.
  • 7Baeumer B,Meerschaert M M,Mortensen J.Space-time fractional derivative operators[J].Proceedings of the American Math Society,2005,133(8):2273-2282.
  • 8Liu F,Anh V,Turner I.Numerical solution of space fractional Fokker-Planck equation[J].Journal of Computational and Applied Mathematics,2004,166:209-219.
  • 9Meerschaert M,Tadjeran C.Finite difference approximations for fractional advection-dispersion flow equations[J].Journal of Computational and Applied Mathematics,2004,172:65-77.
  • 10Zhuang P,Liu F.Implicit difference approximation for the time fractional diffusion equation[J].J Appl Math Computing,2006,22(3):87-99.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部