期刊文献+

基于变量转换的并行优化算法 被引量:1

Parallel Optimization Algorithm Based on Variable Transformation
下载PDF
导出
摘要 针对大规模边界约束优化问题,现有并行变量转换(PVT)算法不适于直接求解。基于此,采用内点法和逐步下降的思想,提出一个并行求解边界约束最优化问题的可行算法。在下降方向满足梯度相关、步长满足Goldstein规则的条件下,证明该算法的收敛性。当约束失效时,该算法退化为求解无约束的PVT算法,从而成为原有算法向约束优化问题的一个推广。 The present Parallel Variable Transformation(PVT) algorithm is not suitable for large scale optimization problem with bounded constraints.This paper proposes a parallel feasible algorithm for bounded constrained optimization problem by the interior-point and the gradual reduction.Yet,the convergence of the algorithm is obtained under the conditions that the reduction direction is gradient dependent and the search step satisfies Goldstein criteria.When the constraints losing effectiveness,it deqenerates into the unconstrained PVT algorithm.It is an extension of unconstrained PVT algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第23期34-35,共2页 Computer Engineering
关键词 并行变量转换 边界约束 并行算法 优化问题 Parallel Variable Transformation(PVT) bounded constraints parallel algorithm optimization problem
  • 相关文献

参考文献6

二级参考文献11

  • 1Fukushima M. Parallel Variable Transformation in Unconstrained Optimization[J]. SIAM Journal on Optimization, 1998, 8(3): 658-672.
  • 2Ferris M C, Mangasarian O L. Parallel Variable Distribution[J]. SIAM Journal on Optimization, 1994, 4(4): 815-832.
  • 3Mangasarian O L. Parallel Gradient Distribution in Unconstrained Optimization[J]. SIAM Journal on Control and Optimization, 1995, 33(6): 1916-1925.
  • 4郑芳英,韩丛英,贺国平.异步PVT算法[C]//中国运筹学会第七界学术交流会(上卷).青岛:[出版者不详],2004:390-398.
  • 5D.P. Bertsekas and J. N.Tsitsiklis, Parallel and Distributed Computation: Numerical Methods,Prentice-Hall:Englewood Cliffs, New Jersey, 1989.
  • 6M.C. Ferris and O.L. Mangasarian, Parallel variable distribution, SIAM J.onOptimization 4(1994), 102-126.
  • 7M. Fukushima, Parallel variable transformation in unconstrained optimization, SIAMJ. on Optimization, 8 (1998), 658-672.
  • 8O.L. Mangasarian, Parallel gradient distribution in unconstrained optimization,SIAM J. Control Optim., 33 (1995), 1916-1925.
  • 9J.M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations inSeveral Variables, Academic Press, New York, 1970.
  • 10M.Ⅴ. Solodov, New inexact parallel variable distribution algorithms,Computational Optimization and Applications, 7(1997), 165-182.

共引文献4

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部