期刊文献+

具有混沌学习率的BP算法 被引量:3

BP Algorithm with Chaotic Learning Rate
下载PDF
导出
摘要 针对BP算法在训练过程中容易陷入局部极小值,导致收敛速率慢的问题,探讨一种利用混沌的遍历特性改进学习效率的算法,用Matlab软件对改进算法进行仿真。实验结果表明,该算法能够提高神经网络的学习效率和收敛精度,较好地避免网络陷入局部极小点。 The main weak point of Back Propagation(BP) algorithm is that the optimal procedure is easily trapped into local minimum value and the speed of convergence is very slow.To solve the problem,this paper makes use of ergodicity property of chaos,starts its improvement from the learning rate.The improved algorithm undergoes a simulated operation with Matlab.The outcome shows that the algorithm improves the speed of network study and the accuracy of convergence,and saves the network from the problem of local minima.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第23期168-170,共3页 Computer Engineering
基金 重庆市教委基金资助项目(KJ090519)
关键词 BP神经网络 混沌 学习率 遍历性 Back Propagation(BP) neural network chaos learning rate ergodicity property
  • 相关文献

参考文献10

  • 1肖晓丽,黄继红,刘志朋.基于MPSO的BP网络及其在入侵检测中的应用[J].计算机工程,2008,34(15):168-169. 被引量:6
  • 2Gan Xusheng, Duanmu Jingshu, Wang Qing. Approximating Algorithm of Wavelet Neural Networks with Self-adaptlve Learning Rate[C]//Proc. of 2008 International Conference on Computer Science and Information Technology. Singapore: [s. n. ], 2008: 968-972.
  • 3Song Guangiun, Zhang Jialin, Sun Zhenlong. The Research of Dynamic Change Learning Rate Strategy in BP Neural Network and Application in Network Intrusion Detection[C]// Proc. of the 3rd International Conference on Innovative Computing Information and Control. Dalian, China: [s. n.], 2008: 513-516.
  • 4王科俊,李国斌.几种变学习率的快速BP算法比较研究[J].哈尔滨工程大学学报,1997,18(3):31-35. 被引量:12
  • 5Fazayeli F, Wang Lipo, Liu Wen. Back-propagation with Chaos[C]//Proc. of International Conference on Neural Networks and Signal Processing. Nanjing, China:[s. n.], 2008.. 5-8.
  • 6周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2003.
  • 7Li Yong, Fu Yang, Zhang Siwen, et al. Improved Algorithm of the Back Propagation Neural Network and Its Application in Fault Diagnosis of Air-cooking Condenser [C]//Proc. of International Conference on Wavelet Analysis and Pattern Recognition. [S. l. ]: IEEE Press, 2009: 180-184.
  • 8范九伦,张雪锋.分段Logistic混沌映射及其性能分析[J].电子学报,2009,37(4):720-725. 被引量:96
  • 9李祥飞,邹恩,邹莉华.前馈神经网络的混沌BP混合学习算法[J].控制与决策,2004,19(4):462-464. 被引量:17
  • 10Ma Zhangshan, Krings A W. Is Chaos Theory Relevant to Reliability and Survivability? [C]//Proc. of 2009 IEEE Aerospace Conference. [S. l. ]: IEEE Press, 2009: 1-10.

二级参考文献21

共引文献133

同被引文献34

  • 1贾永红,张春森,王爱平.基于BP神经网络的多源遥感影像分类[J].西安科技学院学报,2001,21(1):58-60. 被引量:30
  • 2骆成凤,刘正军,王长耀,牛铮.基于遗传算法优化的BP神经网络遥感数据土地覆盖分类[J].农业工程学报,2006,22(12):133-137. 被引量:17
  • 3边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,2010.
  • 4Arulampalam G, Bouzerdoum A. A Generalized Feedforward Neural Network Architecture for Classification and Regression[J]. Neural Networks, 2003, 16(5/6): 561-568.
  • 5Wang Jingen, Lin Shang, Chen Shifu, et al. Application of Fuzzy Classification by Evolutionary Neural Network in Incipient Fault Detection of Power Transformer[C]//Proc. of the Int'l Joint Conf. on'Neural Networks. New York, USA: IEEE Press, 2004.
  • 6The University of California Irvine KDD Archive[EB/OL]. [2007- 06-26]. http:/lkdd.ics, uci.edu/databases/kddeup99/kddcup)9.hinll.
  • 7张德丰.Matlab神经网络应用设计[M].2版.北京.机械工业出版社,2012.
  • 8Turk M, Pentland A. Eigenfaces for recognition [J].Journal of Cognitive Neuroscience, 1991, 3(1): 71-86.
  • 9Kirby M, Sirovich L. Application of the Karhunen-Loeveprocedure for the characterization of human faces[J].IEEE Transactions on Pattern Analysis and MachineIntelligence, 1990, 12(1): 103-108.
  • 10Robert Hecht-Nielsen. Theory of the Back PropagationNeural Network[C]. Proceedings of the InternationalJoint Conference on Neural Networks, 1989: 593-605.

引证文献3

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部