期刊文献+

基于扫频滤波器线性调频信号的滤波算法 被引量:6

An Adaptive Filter Method of LFM Signal Based on Swept Filter
下载PDF
导出
摘要 研究了白噪声环境下线性调频信号的自适应滤波问题.提出一种线性调频信号(LFM)自适应滤波算法.该算法利用分数阶傅里叶变换将LFM信号转化为正弦信号,在分数阶傅里叶域进行自适应滤波,利用分数阶傅里叶反变换得到滤波后的时域信号.分数阶的滤波器可以使用扫频滤波器替代.性能分析表明,该算法的滤波效果取决于自适应滤波器的效果,在使用最下均方(LMS)算法时,步长的选取决定了滤波器的性能,在实际应用中必须按需选取.仿真表明该算法效果明显,计算方便. An adaptive filter method of linear frequency modulation(LFM) signal in white noise is discussed,and a LFM signal is produced.The LFM signal is transformed to sinusoid signal by Fourier reverse transform(FRFT).The adaptive filter,which can be replaced by swept filter,is implemented in domain u,and the filtered signal is gained with the fractional FRFT.A detailed analysis of the method performance proves that the method performance depends on adaptive filter.When LMS algorithm is used,the performance of ALE is decided by step parameter,and the step parameter is selected in practice.At last,Simulation results show that this filtering algorithm is simple to computated and easy to implement.
作者 黄文玲 杨鹏
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第11期1656-1658,1674,共4页 Journal of Tongji University:Natural Science
关键词 线性调频信号 自适应滤波 分数阶傅里叶变换 扫频滤波器 linear frequency modulation(LFM) signal adaptive filter Fourier reverse transform(FRFT) swept filter
  • 相关文献

参考文献7

二级参考文献11

  • 1Van Trees H L. Detection, Estimation, and Modulation Theory-Part 1. John Wiley and Sons. New York. 1968, Chapter 4.
  • 2Kay S and Salisbury S. Improved active sonar detection using autoregressive prewhiteners.[J]. J. Acoust. Soc. Am., 1990, 87 (4): 1603-1611.
  • 3Carmillet V and Amblard P O, et al.. Detection of phase- or frequency-modulated signals in reverberation noise[J]. J. Acoust. Soc. Am, 1999, 105(6): 3375-3389.
  • 4Akay O and Boudreaux-Bartels G F. Fractional autocorrelation and its application to detection and estimation of linear FM signals, in Proc. IEEE-SP Int. Symp. Time-Frequency Time-Scale Anal. Pittsburgh, PA.1998: 213-216.
  • 5Candan C and Kutay M A, et al.. The discrete fractional Fourier transforms. IEEE Trans. on Signal Processing, 2000, 48(5): 1329-1337.
  • 6Ozaktas H M and Arikan O, et al.. Digital computation of the fractional Fourier transformation. IEEE Trans.on Signal Processing, 1996, 44(9): 2141-2150.
  • 7Pei S C, Yeh M H, and Tseng C C. Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans. on Signal Processing, 1999, 47(5): 1335-1348.
  • 8Juan G Vargas-Rubio and Balu Santhanam. On the multiangle centered discrete fractional Fourier transform. IEEE Signal Processing Letters, 2005, 12(4): 273-276.
  • 9Almeida L B. The fractional Fourier transform and time-frequency representations. IEEE Trans. on Signal Processing, 1994, 42(11): 3084-3091.
  • 10Struzinski W and Lowe E D. A performance comparison of four noise background normalization schemes proposed for signal detection systems. J. Acoust. Soc. Am. 1984, 76(6): 1738-1742.

共引文献51

同被引文献39

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部