摘要
在标准最小二乘支持向量机(least square supportvector machine,LS-SVM)的基础上,利用改进的粒子群算法(i mproved particle swarmopti mization,IPSO)来优化LS-SVM模型参数,提出了基于IPSO-LS-SVM的软测量建模方法,建立了作物叶水势软测量模型.仿真结果表明,该方法比基本LS-SVM和PSO-LS-SVM模型具有更高的精度,能够很好地预测作物叶水势信息.
Based on study on least square support vector machine(LS-SVM),the paper presents an improved particle swarm optimization(IPSO) algorithm to select the parameters of LS-SVM.The soft sensor modeling of the leaf water potential is established based on IPSO-LS-SVM.Simulation results indicate that the method based on IPSO-LS-SVM is of a higher accuracy than the basic LS-SVM and LS-SVM based on PSO,which can well predict leaf water potential.
出处
《同济大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2010年第11期1669-1674,共6页
Journal of Tongji University:Natural Science
基金
上海市基础研究重点资助项目(08JC1408200)
国家自然科学基金资助项目(60772167)
国家"八六三"高技术研究发展计划资助项目(2009AA04Z141)
关键词
作物叶水势
软测量
最小二乘支持向量机
粒子群
leaf water potential
soft sensing
least square support vector machine(LS-SVM)
particle swarm optimization(PSO)