期刊文献+

国际组合套利机理及优化策略分析 被引量:1

Analysis on Mechanism of International Portfolio Arbitrage and Its Optimal Strategy
下载PDF
导出
摘要 以国际套利定价理论为基础并对其进行拓展,构建了国际多因素模型.通过进一步的数理分析,给出国际组合套利行为的定义,指出国际组合套利的触发条件和套利机会出现的决定因素,进而对国际组合套利行为的机理进行了系统描述:即通过构建组合,提高资产相关性,实现用于套利的资产匹配.在忽略交易成本的前提下,运用均值-方差法,求解出一种优化的套利组合权重. Based on the extended international arbitrage pricing theory(IAPT),an international multiple factors model is established.Through relative mathematical analysis,the behavior of international portfolio arbitrage is defined,and the trigger conditions and determinants are described by the numbers.The mechanism of the international portfolio arbitrage behavior is revealed as: through establishing portfolio to increase relativity of the assets,the assets used for arbitrage can be matched.Under the condition without any transaction cost,an optimal weight of portfolio arbitrage can be solved with the mean-variance method.
作者 陈伟忠 詹欣
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第11期1714-1718,共5页 Journal of Tongji University:Natural Science
关键词 国际组合套利 公共风险因素 时间序列分析 相关性 均值-方差法 international portfolio arbitrage common risk factor time series analysis relativity mean-variance method
  • 相关文献

参考文献11

  • 1Odier P, Solinik B. Lessons for international asset allocation[J]. Financial Analysts Journal, 1993,49 (2) : 63.
  • 2Celebuski M, Hill J, Kilgannon J. Managing currency exposure in international portfolios[J]. Financial Analysts Journal, 1990, 46(1) :16.
  • 3Filatov V, Rappaport p. Is complete hedging optimal for international bond portfolios [J]. Financial Analysis Journal, 1992,48(4) :37.
  • 4FANG Shuhong. A mean-variance analysis of arbitrage portfolios[J]. Physica A, 2007,375 (2): 625.
  • 5Clare A D,Oozeer M C. Hedging sterling eurobond portfolios: a proposal for eurobond futures contract[J]. Applied Financial Economics, 2001,11(1) :37.
  • 6马永开,唐小我.组合套期保值策略及其理论研究[J].预测,1999,18(4):48-51. 被引量:42
  • 7刘燕武,张忠桢.组合套期保值的多元线性回归特征[J].系统管理学报,2008,17(3):303-306. 被引量:1
  • 8Carassus L, Huyen P, Nizar T. No Arbitrage in discrete time under portfolio constraints[J].Mathematical Finance, 2001,11 (3):315.
  • 9Bank P, Baum D. Hedging and portfolio optimization in financial markets with a large trade[J].Mathematical Finance, 2004,14 (1):1.
  • 10Solnik B H. International arbitrage pricing theory[J].Journal of Finance, 1983,38 (2):449.

二级参考文献20

  • 1汤玉东,郝君,吴军基,徐诚,邹云.考虑交易费用的复合期货套期保值策略及其在武器采购中的应用[J].兵工学报,2004,25(6):738-740. 被引量:2
  • 2约翰·赫尔 张陶伟(译).期权、期货和衍生证券[M].北京:华夏出版社,1997..
  • 3洛伦兹·格利茨.金融工程学[M].北京:经济科学出版社,1998..
  • 4[2]Anderson Danthine.Cross hedging[J].Journal of Political Economy,1981,89(6):1182-1196.
  • 5[3]Mello Neuhaus.A portfolio approach to risk reduction in discretely rebalanced option hedges[J].Management Science,1998,44(7):921-934.
  • 6[7]Stevens.On the inverse of the covariance matrix in portfolio analysis[J].The Journal of Finance,1998,LIII(5):1821-1827.
  • 7张陶伟(译),期权、期货和衍生证券,1997年,38页
  • 8Schrock N W. The theory of asset choice: simultaneous holding of short and long positions in the futures market[J]. Journal of Poliricai Economy, 1971,79: 270-293.
  • 9Poitras G. Optimal futures spread positions[J]. The Journal of Futures Markets, 1989,9 (2) : 123-133.
  • 10Lioui A,Eldor R. Optimal spreading when spreading is optimal [J]. Journal of Economic Dynamics and Control, 1998,23 : 277-301.

共引文献42

同被引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部