期刊文献+

基于混合量子进化计算的混沌系统参数估计 被引量:3

Hybrid quantum-inspired evolutionary algorithm-based parameter estimation for chaotic systems
下载PDF
导出
摘要 混沌系统参数估计本质上是一多维参数优化问题.为精确估计混沌系统的未知参数,本文提出一种混合量子进化算法(HQEA)用于求解该优化问题,该方法采用实数量子角形式表示染色体,用量子比特的概率作为个体的当前位置信息;提出由差分进化计算更新量子位置状态的量子差分进化算法(QDE),并将其与实数编码量子进化算法(RQEA)相融合,以便令算法在解空间的全局探索和局部开发能力之间取得平衡.算法还引入量子非门算子,对当前最佳个体中按某个概率选中的量子比特位,进行变换操作,以便增强算法跳出局部最优解的能力.基准函数测试表明混合算法的全局搜索能力及可靠性都有很大改善.通过Lorenz混沌系统进行数值仿真,结果表明了该混合算法的有效性. Parameter estimation of chaotic systems is essentially a multidimensional optimization problem. To estimate the unknown parameters of chaotic systems precisely, we present an effective hybrid quantum-inspired evolutionary algo- rithm (HQEA), in which the real-valued quantum angle is used to express the Q-bits of chromosome, and the probability of each Q-bit is considered the position information of the chromosome. Combining the quantum differential evolutionary algorithm (QDE) which uses differential evolution to update the state of Q-bits with the real-coded quantum evolutionary algorithm (RQEA) which employs quantum rotation gate to update the state of Q-bits, we make a balance between the global exploration and the local exploitation. In addition, the HQEA performs the quantum non-gate operation in which the Q-bits selected from the current best chromosome with a certain probability are transformed to get rid of the premature local optimum. The experimental results of benchmark function tests show that the HQEA algorithm greatly improves the global optimization performance as well as the reliability performance. Numerical simulation results of the Lorenz system also demonstrate its effectiveness.
作者 任子武 熊蓉
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第11期1448-1454,共7页 Control Theory & Applications
基金 国家"863"计划重点资助项目(2008AA042602)
关键词 量子进化算法 差分进化算法 混沌系统 参数估计 quantum-inspired evolutionary algorithm differential evolution chaotic system parameter estimation
  • 相关文献

参考文献15

  • 1OTT E, GREBOGI C, YORKE J A. Controlling chaos[J]. Physical Review Letters, 1990, 64(11): 1196 - 1199.
  • 2LU Z, SHIEH L S, CHEN G R. On robust control of uncertain chaotic systems: a sliding-mode synthesis via chaotic optimization[J]. Chaos, Solitons & Fractals, 2003, 18(4): 819 - 827.
  • 3ELABBASY E M, AGIZA H N, EL-DESSOKY M M. Global synchronization criterion and adaptive synchronization for new chaotic system[J]. Chaos, Solitons & Fractals, 2005, 23(4): 1299 - 1309.
  • 4戴栋,马西奎,李富才,尤勇.一种基于遗传算法的混沌系统参数估计方法[J].物理学报,2002,51(11):2459-2462. 被引量:29
  • 5李丽香,彭海朋,杨义先,王向东.基于混沌蚂蚁群算法的Lorenz混沌系统的参数估计[J].物理学报,2007,56(1):51-55. 被引量:26
  • 6HE Q, WANG L, LIU B. Parameter estimation for chaotic systems by particle swarm optimization[J]. Chaos, Solitons & Fractals, 2007, 34(2): 654 - 661.
  • 7PENG B, LIU B, ZHANG F Y, et al. Differential evolution algorithm-based parameter estimation for chaotic systems[J]. Chaos, Solitons & Fractals, 2009, 39(5): 2110 - 2118.
  • 8BENIOFF E The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by Turing machines[J]. Journal of Statistical Physics, 1980, 22(5): 563 -591.
  • 9FEYNMAN R. Simulating physics with computers[J]. International Journal of Theoretical Physics, 1982, 21 (6): 467 - 488.
  • 10HANK H, KIM J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(6): 580 - 593.

二级参考文献34

  • 1刘福才,梁晓明.Hénon混沌系统的广义预测控制与同步快速算法[J].物理学报,2005,54(10):4584-4589. 被引量:18
  • 2王兴元,武相军.不确定Chen系统的参数辨识与自适应同步[J].物理学报,2006,55(2):605-609. 被引量:42
  • 3吴忠强,谭拂晓,王绍仙.基于无源化的细胞神经网络超混沌系统同步[J].物理学报,2006,55(4):1651-1658. 被引量:13
  • 4李丽香,彭海朋,王向东,杨义先.基于混沌蚂蚁群算法的PID控制器的参数整定[J].仪器仪表学报,2006,27(9):1104-1106. 被引量:22
  • 5赵荣椿.数字图像处理导论[M].西安:西北工业大学出版社,1999..
  • 6SHOR P W. Algorithms for quantum computation: Discrete logarithms and factoring[C]//Proceedings of the 35th Annual Symposium on Foundations of Computer Science. New York, USA: IEEE Computer Society Press, 1994, 11:124 - 134.
  • 7GROVER L K. A fast quantum mechanical algorithm for database search[C]//Proceedings of the 28th annual ACM Symposium on Theory of Computing . New York, USA: ACM Press, 1996, 6:212 - 219.
  • 8NARAYANAN A, MOORE M. Quantum inspired genetic algorithm[C]//Proceedings of IEEE International Conference on Evolutionary Computation. New York, USA: IEEE Press, 1996, 5:61 - 66.
  • 9HANK H, KIM J H. Quantum-inspired evolutionary algorithm for a class of combinatorial optimization[J]. IEEE Transactions on Evolutionary Computation, 2002, 16(6): 580 - 593.
  • 10HAN K H, KIM J H. Genetic quantum algorithm and its application to combinatorial optimization problem[C]//Proceedings of the 2000 Congress on Evolutionary Computation. New York, USA: IEEE Press, 2000, 7: 1354- 1360.

共引文献91

同被引文献69

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部