期刊文献+

具有Neumann边界的分布参数切换系统的容错控制 被引量:3

Fault-tolerant control for distributed-parameter switched systems with Neumann boundary conditions
下载PDF
导出
摘要 本文研究了一类具有Neumann边界条件的分布参数切换系统的容错控制问题.当执行器失效或部分失效时,运用Lyapunov函数法和Green公式,获得了闭环切换系统混杂状态反馈容错控制器存在的充分条件.然后运用线性矩阵不等式将容错控制器设计问题转化为一组线性矩阵不等式求可行解的问题,因而可以借助MATLAB中线性矩阵不等式工具箱来完成.同时,运用Poincare不等式减少控制系统设计的保守性.最后通过数值算例,验证所提出设计方法的有效性. We study the fault-tolerant control for a class of distributed parameter switched systems with Neumann boundary conditions. Under actuator failure or partial failure, the sufficient condition for the existence of a closed-loop switched fault-tolerant controller with hybrid state feedback is obtained based on Lyapunov function method and Green formula. By the linear matrix inequality (LMI) approach, the design of the fault-tolerant controller is converted into finding feasible solutions to a group of LMIs, which can be efficiently carried out by using MATLAB LMI toolbox. Simultaneously, Poincare inequality is used to reduce the conservativeness of the control system design. Finally, a numerical example validates the proposed design method.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第11期1525-1530,共6页 Control Theory & Applications
基金 国家自然科学基金资助项目(60974022)
关键词 分布参数系统 切换系统 容错控制 NEUMANN边界 distributed-parameter systems switched systems fault-tolerant control Neumann boundary
  • 相关文献

参考文献13

二级参考文献69

  • 1张红涛,刘新芝.关于一类脉冲切换系统的鲁棒H_∞控制[J].控制理论与应用,2004,21(2):261-266. 被引量:23
  • 2孔德明,方华京.Stable Fault-tolerance Control for a Class of Networked Control Systems[J].自动化学报,2005,31(2):267-273. 被引量:15
  • 3[1]Veillette R J. Reliable linear-quadratic state-feedback control[J]. Automatica, 1995,31(1):137-143.
  • 4[2]Veillette R J, Medanic J, Perkins W R. Design of robust fault
  • 5[4]Liberzon D, Morse A S. Basic problems in stability and design of switched system[J]. IEEE Control System Magazine, 1999,37(3):117-122.
  • 6[5]Decalo R A, Branicky M S, Pettersson S. Perspectives and results on the stability and stabilizability of hybrid systems[J]. Proceedings of the IEEE, 2000,88(7):1069-1082.
  • 7[6]Boyd S, Chaoui L E, Feron E, et al. Linear matrix inequalities in system and control theory[M]. Philadelphia: SIAM, 1994.112-116
  • 8[7]Shorten R, Narendra K S, Mason O. A result on common quadratic Lyapunov functions[J]. IEEE Transactions on Automatic Control, 2003,48(1):110-113.
  • 9[8]Branicky M S. Multiple Lyapunov fuctions and other analysis tools for switched and hybrid systems[J]. IEEE Transactions on Automatic Control, 1998,43(4):475-482.
  • 10[10]Wang Z D, Huang B, Unbehauen H. Robust reliable control for a class of uncertain nonlinear state-delayed systems[J]. Automatica, 1999,35(5):955-963.

共引文献92

同被引文献23

  • 1Arimoto S, Kawamura S, Miyazaki F. Bettering operation of robots by learning. Journal of Robotic Systems, 1984, 1(2): 123-140.
  • 2Bien Z, Hwang D H, Oh S R. A nonlinear iterarive learning method for robot path control. Robotica, 1991, 9(4): 387-392.
  • 3Sun M, Wang D. Iterarive learning control with initial rectifying action. Automatica, 2002, 38(7): 1177-1182.
  • 4Chen Y, Wen C, Gong Z, Sun M. An iterarive learning controller with initial state learning. IEEE Transactions on Automatic Control, 1999, 42(2): 371-376.
  • 5Freeman C T, Cai Z L, Rogers E, Lewin P L. Iterarive learning control for Multiple point-to-point tracking application. IEEE Transactions on Control Systems Technology, 2011, 19(3): 590-600.
  • 6Ruan X E, Bien Z, Wang Q. Convergence characteristics of proportional-type iteraxive learning control in the sense of Lebesgue-p norm. IET Control Theory and Applications, 2012, 6(5): 707- 714.
  • 7Xu J X, Tan Y. Robust optmal design and convergence properties analysis of iterarive learning control approaches. Automatica, 2002, 38(11): 1867-1880.
  • 8Xu J X, Tan Y. On the P-type and Newton-type ILC schemes for dynamic systems with non- affine-in-input factors. Automatica, 2002, 38(7): 1237-1242.
  • 9傅勤.一类分布参数系统的有限时间镇定.Proceeding of the 10th World Congress on Intelligent Control and Automation, Beijing, China, USA: IEEE, 2012, 1948-1952.
  • 10Choi J, Seo B J, Lee K S. Constrained digital regulation of hyperbolic PDE: A learning control approach. Korean Journal of Chemical Engineering, 2001, 18(5): 606-611.

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部