期刊文献+

符合人类视觉感知的图像对象分割方法 被引量:1

Image Object Segmentation Method in Accord with Human Vision Perception
下载PDF
导出
摘要 提出一种符合人类视觉感知的图像对象分割方法,包括双尺度的区域分割和基于模型的对象提取。运用非线性尺度算子对图像进行大尺度平滑,结合颜色量化和视觉一致性的颜色聚类完成图像的粗分割。在原尺度上融合区域的纹理、颜色信息对分割区域进行区域合并,并利用对象模型完成图像对象的提取。实验结果表明,该算法的分割结果符合人类视觉感知特性,能够较好地完成图像对象分割。 Image object segmentation method in accord with human vision perception, which consists of double-scale region segmentation and object extraction based on object model, is proposed in this paper. An image is smoothed by nolinear scale operator in coarse-scale, color quantization and perceptual color clustering are exploited to form the initial segmented regions. The initial regions are merged based on the region distance in the original finest-scale. Object model is used to implement image object extraction. Experimental results demonstrate that the proposed algorithm gets better image object segmentation with favorable consistency to human vision perception.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第24期6-8,共3页 Computer Engineering
基金 国家"863"计划基金资助项目(2007AA12Z153) 民用航天预研计划基金资助项目
关键词 视觉感知 对象分割 双尺度空间 区域合并准则 vision perception object segmentation double-scale spaces region merger criteria
  • 相关文献

参考文献6

  • 1章毓晋.图像分割[M].北京:科学技术出版社.2006.152-155.
  • 2Fan Jianping, Zhu Xingquan, Wu Lide. Automatic Model-based Semantic Object Extraction Algorithm[J]. IEEE Trans. on Circuits and Systems for Video Technology, 2001, 11(10): 1073-1084.
  • 3Petrovic A, Escoda O D, Vandergheynst E Multiresolution Segmentation of Natural Images: From Linear to Nonlinear Scale-space Representations[J]. IEEE Trans. on Image Processing, 2004, 13(8): 109-1110.
  • 4蔡涛,徐国华,徐筱龙.基于模糊C均值与Markov随机场的图像分割[J].计算机工程,2007,33(20):34-36. 被引量:15
  • 5叶齐祥,高文,王伟强,黄铁军.一种融合颜色和空间信息的彩色图像分割算法[J].软件学报,2004,15(4):522-530. 被引量:119
  • 6Comanicu D, Meer R Mean Shift: A Robust Approach Toward Feature Space Analysis[J]. IEEE Trans. on Patten Analysis and Machine Intelligence, 2002, 24(5): 603-619.

二级参考文献7

  • 1章毓晋.图像工程[M].北京:清华大学出版社,1999..
  • 2Bezdek J C. Pattern Recognition with Fuzzy Objective Function Algorithms[M]. New York: Plenum Press, 1981.
  • 3Gustafson D E, Kessel W C. Fuzzy Clustering with Fuzzy Covariance Matrix[C]//Proceedings of the IEEE CDC'79.1979,761-766.
  • 4Gath I, Geva A B. Unsupervised Optimal Fuzzy Clustering[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1989,11(7):773-781.
  • 5Krishnapuram R, Killer J. A Possibilistic Approach to Clustering[J]. IEEE Transactions on Fuzzy System, 1993,1(2):98-110.
  • 6Besag J. On the Statistical Analysis of Dirty Pictures[J]. Journal of Royal Statistical Society, 1986, B48(3): 259-302.
  • 7Geman S, Geman D. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1984,6(6):721-741.

共引文献133

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部