摘要
提出一种符合人类视觉感知的图像对象分割方法,包括双尺度的区域分割和基于模型的对象提取。运用非线性尺度算子对图像进行大尺度平滑,结合颜色量化和视觉一致性的颜色聚类完成图像的粗分割。在原尺度上融合区域的纹理、颜色信息对分割区域进行区域合并,并利用对象模型完成图像对象的提取。实验结果表明,该算法的分割结果符合人类视觉感知特性,能够较好地完成图像对象分割。
Image object segmentation method in accord with human vision perception, which consists of double-scale region segmentation and object extraction based on object model, is proposed in this paper. An image is smoothed by nolinear scale operator in coarse-scale, color quantization and perceptual color clustering are exploited to form the initial segmented regions. The initial regions are merged based on the region distance in the original finest-scale. Object model is used to implement image object extraction. Experimental results demonstrate that the proposed algorithm gets better image object segmentation with favorable consistency to human vision perception.
出处
《计算机工程》
CAS
CSCD
北大核心
2010年第24期6-8,共3页
Computer Engineering
基金
国家"863"计划基金资助项目(2007AA12Z153)
民用航天预研计划基金资助项目
关键词
视觉感知
对象分割
双尺度空间
区域合并准则
vision perception
object segmentation
double-scale spaces
region merger criteria