期刊文献+

基于协同进化遗传算法的模型拟合研究 被引量:1

Research of Model Fitting Based on Co-evolutionary Genetic Algorithm
下载PDF
导出
摘要 普通遗传进化算法在解决模型拟合问题中,建模与优化顺序结构时优化效果有限、拟合速度慢、稳定性低。针对上述问题,提出基于协同进化遗传算法的模型拟合算法。该算法将建模与优化问题抽象成多种群间协同进化,通过种群间整体的适应度值交换,将种群关联起来,扩大智能算法建模过程中参数优化的时空作用范围。各种群间含有不同基因表达,在解决局部问题时具有自包含性,有利于更好地发挥各智能算法(遗传算法、遗传规划)的优势。实验结果表明,该算法的稳定性和收敛速度优于传统遗传进化算法。 This paper proposes an advanced co-evolutionary model fitting algorithm. It optimizes the process in the course of solving the symbolic regression, especially to the shortcomings of traditional Genetic Algorithm(GA). It abstracts the modeling and optimization into a variety of inter-group co-evolution, associating these populations through exchange of fitness value, while extending the intelligent algorithm both in spatial and temporal scope when optimizing the parameters modeling. For the various groups with different gene expression, they have their nature self-contained in solving certain problems. It is more conducive to take advantages of the intelligent algorithms(GA, Genetic Programming(GP)), Compared with the traditional algorithm, the co-evolutionary model fitting algorithm shows a significant improvement in stability and convergence rate.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第24期147-149,共3页 Computer Engineering
基金 国家自然科学基金资助项目(30871451) 中国科学院知识创新工程基金资助重要方向项目(KGCX2-SW-511)
关键词 遗传算法 遗传规划 协同进化 模型拟合 Genetic Algorithm(GA) Genetic Programming(GP) co-evolution model fitting
  • 相关文献

参考文献6

  • 1殷文.改进的并行遗传模型的构建及应用[J].计算机工程,2008,34(4):203-206. 被引量:2
  • 2陈小平,赵鹤鸣,杨新艳.遗传前馈神经网络在函数逼近中的应用[J].计算机工程,2008,34(20):24-25. 被引量:7
  • 3Li Miao, Zhang Jian, YuanYuan. An Algorithm of Fertilization Model Fitting Based on Mixed Intelligent Computation[C]//Proc. of 2009 International Conference on Advanced Computer Control. Singapore: [s. n.], 2009: 425-429.
  • 4袁媛,李淼,李录久,张国兵,陈曦,万莉.基于智能计算的施肥模型算法研究[J].农业工程学报,2008,24(12):116-119. 被引量:5
  • 5Lohn J D, Kraus W F, Haith G L. Comparing a Coevolutionary Genetic Algorithm for Multiobjective Optimization[C]//Proc. of the 2002 Congress on Evolutionary Computation. Honolulu, HI, USA: [s. n.], 2002: 1157-1162.
  • 6Vanneschi L, Mauri G, Cagnoni S. Strategies of Integration Between GP and GA[C]//Proc. of GECCO'02. Washington D. C., USA: [s. n.], 2006: 361-368.

二级参考文献26

  • 1侯彦林,陈守伦.施肥模型研究综述[J].土壤通报,2004,35(4):493-501. 被引量:88
  • 2唐丽珏,李淼,张建.混合GP-GA用于信息系统建模预测的研究[J].计算机工程与应用,2004,40(25):44-48. 被引量:15
  • 3陆海燕,李萍萍,毛罕平.基于人工神经网络技术的蔬菜施肥决策研究[J].中国农机化,2004(5):20-22. 被引量:2
  • 4米湘成,马克平,邹应斌.人工神经网络模型及其在农业和生态学研究中的应用[J].植物生态学报,2005,29(5):863-870. 被引量:18
  • 5Pokrajac D, Obradovic Z. Neural network-based software for fertilizer optimization in precision farming[A]. In: Proc. International Joint Conference on Neural Networks[C]. Washington, DC, USA, 2001: 2110-2115.
  • 6Pokrajac D, Obradovic Z. A neural network-based method for site-specific fertilization recommendation[R]. ASAE Annual International Meeting. Sacramento, California, USA, 2001.
  • 7Covolan Ulson J A, Benez S H, de Silva I N, et al. Nitrogen content identification in crop plants using spectral reflectance and artificial neural networks[A]. In:International Joint Conference on Neural Networks[C]. Washington, DC, USA, 2001: 2088-2092.
  • 8Roy A. Artificial Neural Networks - A science in trouble[J]. ACM SIGKDD Explorations Newsletter, 2001, 1(2): 33 -38.
  • 9Eberbach E. The role of completeness in convergence of evolutionary algorithms[J]. Evolutionary Computation, 2005. The 2005 IEEE Congress on, Sept, 2005, 2(2-5): 1706- 1713.
  • 10Luger, George E Genetic Algorithm & Genetic Programming, Artificial Intelligence, Structures and Strategies for Complex Problem Solving, Fourth Edition[M]. Harlow, England: Addison-Wesley, 2002: 471.

共引文献11

同被引文献9

  • 1殷国富,罗阳,龙红能,成尔京.并行设计子任务调度的遗传算法原理与实现方法[J].计算机辅助设计与图形学学报,2004,16(8):1122-1126. 被引量:25
  • 2Merkle D,Middendof M,Sehmeek H.Ant Colony Optimization for Resource-constrained Project Scheduling[J].IEEE Transactions on Evolutionary Computation,2002,6(4):333-346.
  • 3Valls V,Ballestin F,Quintanilla S.A Hybrid-genetic Algorithm for the Resource-constrained Project Scheduling Problem[J].European Journal of Operational,2008,185(2):495-508.
  • 4Doerner K F,Gutjahr W J,Hartl R F,et al.Nature-inspired Metaheuristics for Multiobjective Activity Crashing[J].Omega-international Journal of Management Science,2008,36(6):1019-1037.
  • 5Deb K,Pratap A,Agarwal S,et al.A Fast and Elitist Multi-objective Genetic Algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation,2002,6(2):182-197.
  • 6Kolisch R.Serial and Parallel Resource-constrained Project Methods Revisited:Theory and Computation[J].European Journal of Operational Research,1996,90(2):320-333.
  • 7Kolisch R,Spreacher A.PSPLIB-A Project Scheduling Problem Library[J].European Journal of Operational Research,1996,96(1):205-216.
  • 8曾三友,蔡振华,张青,康立山.一种评估近似Pareto前沿多样性的方法[J].软件学报,2008,19(6):1301-1308. 被引量:8
  • 9胡仕成,徐晓飞,李向阳.项目优化调度的病毒协同进化遗传算法[J].软件学报,2004,15(1):49-57. 被引量:27

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部