期刊文献+

基于对称粒子群算法的动态环境问题求解 被引量:2

Dynamic Environment Problem Solution Based on Symmetric Particles Algorithm
下载PDF
导出
摘要 针对动态环境问题,提出一种具有自学习功能的对称粒子群算法(SymPSO)。该算法提出利用静态粒子群检测环境的变化,并基于对称粒子思想,在不增加运算量的前提下生成多个对称虚拟粒子群,扩大了种群搜索能力。为保证算法尽快逃离局部最优,给出广域学习策略,用以提高粒子的自学习能力。基于DF1环境下的仿真对比试验表明,SymPSO算法能快速跟踪最优值变化及迅速跳出局部最优,证实了其有效性。 For the dynamic environment problem, this paper presents a self-learning function of the Symmetry Particle Swarm Optimization(SymPSO). The algorithm proposes to detect changes of the environment by using a static virtual particle swarm, and based on the thought of symmetric particles, without increasing the computational complexity, generates multiple symmetric virtual population. It can significantly expand the ability of population. To ensure the algorithm to escape from local optimum as quickly as possible, this paper proposes wide-area learning strategies to enhance self-learning ability of particles. Simulation comparative tests based on DFI environment show that SymPSO algorithm can track the optimal value changes and escape from local optimum quickly, indicating the effectiveness of the algorithm.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第24期150-152,155,共4页 Computer Engineering
基金 山东省科技攻关基金资助项目(2009GG10001008) 山东省软科学研究计划基金项目(2009RKA285) 济南市高校院所自主创新基金资助项目(200906001)
关键词 粒子群优化 对称粒子群 静态粒子 广域学习 动态环境 Particle Swarm Optimization(PSO) Symmetry Particle Swarm Optimization(SymPSO) static particle wide learning dynamic environment
  • 相关文献

参考文献8

二级参考文献37

  • 1窦全胜,周春光,徐中宇,潘冠宇.动态优化环境下的群核进化粒子群优化方法[J].计算机研究与发展,2006,43(1):89-95. 被引量:20
  • 2单世民,邓贵仕.动态环境下一种改进的自适应微粒群算法[J].系统工程理论与实践,2006,26(3):39-44. 被引量:16
  • 3Kennedy J, Eberhart R. Particle swarm optimization [C]. Proc of IEEE Int Conf on Neural Networks. Perth: IEEE Press, 1995, 4: 1942-1947.
  • 4Hu X H, Russell C Eberhart. Adaptive particle swarm optimization: Detection and response to dynamic systems[C]. Proe of the IEEE Int Conf on Evolutionary Computation. Honolulu: IEEE Press, 2002: 1666- 1670.
  • 5Carlisle A, Dozier G. Tracking changing extrema with adaptive particle swarm optimizer [ C ]. World Automation Congress. Orlando, 2002: 265-270.
  • 6Blackwell T, Branke J. Multi-swarm optimization in dynamic environments [ C ]. Proc of the 2004 Applications of Evolutionary Computing Workshops. Coimbra: IEEE Press, 2004: 489-500.
  • 7Du W L, Li B. Multi-strategy ensemble particle swarm optimization for dynamic optimization[J].Information Sciences, 2008, 178(15):3096-3109.
  • 8Morrison R W, De Jong K A. A test problem generator for non-stationary environments [C]. Proc of the Congress on Evolutionary Computation. Piscataway: IEEE Press, 1999:2047-2053.
  • 9Kennedy J, Eberhart R. Particle Swarm Optimization[C]//Proc. of ICNN'95. Perth, Western Australia: 1EEE Press, 1995.
  • 10Shi Yuhui, Eberhart R. A Modified Particle Swarm Optimizer[C]// Proc. of the 5th IEEE Conference on Evolutionary Computation. Singapore: IEEE Press, 1998.

共引文献42

同被引文献34

  • 1单世民,邓贵仕.动态环境下一种改进的自适应微粒群算法[J].系统工程理论与实践,2006,26(3):39-44. 被引量:16
  • 2BLACKWELL T M, BENTLEY P J. Dynamic search with charged swarms [C] //Proceedings of the Genetic and Evolutionary Compu- tation Conference 2002. New York: Morgan Kaufmann Publishers, 2002:19 - 26.
  • 3BLACKWELL T M. Particle swarms and population diversity I: anal- ysis [J]. Soft Computing - A Fusion of Foundations, Methodologies and Applications, 2005, 9(11): 793 -802.
  • 4BLACKWELL T M, BENTLEY P J. Multiswarms, exclusion, and anti-convergence in dynamic environments [J]. IEEE Transactions on Evolutionary Computation, 2006, 10(4): 459 - 472.
  • 5BONABEAU E, DORIGO M, THERAULAZ G. Swarm Intelligence: from Natural to Artificial Systems [M]. Oxford: Oxford University Press, 1999.
  • 6BRANKE J. Memory enhanced evolutionary algorithms for chang- ing optimization problems [C] //Proceedings of the 1999 Congress on Evolutionary Computation. Washington, DC: IEEE, 1999(3): 1875 - 1882.
  • 7BRANKE J, KAUBLER T, SCHMIDTH C, et al. A multi-population approach to dynamic optimization problems [C] //Adaptive Comput- ing in Design and Manufacturing. Berlin: Springer-Verlag, 2000:299 - 308.
  • 8BRANKE J. Evolutionary Optimization in Dynamic Environments [M]. Dordrecht: Kluwer Academic Publishers, 2002.
  • 9YU E, SUGANTHAN E Evolutionary programming with ensemble of external memories for dynamic optimization [C] //Proceedings of the 2009 IEEE Congress on Evolutionary Computation. Trondheim, Norway: IEEE, 2009: 431- 438.
  • 10GREEFF M, ENGELBRECHT A E Solving dynamic multi-objective problems with vector evaluated particle swarm optimisation [C] //Proceedings of the 2008 IEEE Congress on Evolutionary Compu- tation. Hong Kong: IEEE, 2008:2917 - 2924.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部