期刊文献+

基于条件随机域模型的中文实体关系抽取 被引量:2

Chinese Entity Relation Extraction Based on Conditional Random Fields Model
下载PDF
导出
摘要 针对信息抽取领域中存在的抽取结果难以满足需要的问题,给出基于条件随机域模型的方法,以解决组块标注和实体关系抽取问题。通过定义中文组块和实体关系的标注方式,选择比较通用的《人民日报》语料,训练出效率较高的二阶模板来抽取文本中的实体关系。实验结果表明,该方法可以获得更好的抽取效果。 To solve disorder among information items and lack of information item in the field of information extraction, this paper proposes a solution to deal with chunks labeling and Entity Relation Extraction(ERE) based on the conditional random fields model. This paper defines the representation of Chinese chunk and entity relation, and uses label dataset of "People's Daily" as sample dataset to train an optimized model for the entity extraction. Experimental results show this method has better extraction performance.
作者 周晶
出处 《计算机工程》 CAS CSCD 北大核心 2010年第24期192-194,共3页 Computer Engineering
关键词 信息抽取 组块标注 实体关系抽取 条件随机域模型 information extraction chunks labeling entity relation extraction Conditional Random Fields(CRFs) model
  • 相关文献

参考文献8

二级参考文献22

  • 1Laender A, Ribeiro-Neto B, Silva A, et el. A Brief Survey of Web Data Extraction Tools[J]. ACM SIGMOD Record, 2002, 31(2): 84-93.
  • 2Hammer J, McHugh J, Garcia-Molina H. Semi-structured Data: The TSIMMIS Experience[C]//Proceedings of the 1st East-European Symposium on Advances in Databases and Information Systems. St. Petersburg, Russia: [s. n], 1997.
  • 3Crescenzi V, MeccaG, MerialdoE RoadRunner: Towards Automatic Data Extraction from Large Web Sites[C]//Proceedings of 27th Int'l Conference on Very Large Databases. San Francisco, USA: [s, n.], 2001.
  • 4Muslea I, Minton S, Knoblock C. Hierarchical Wrapper Induction for Semi-structured Information Sources[J]. Autonomous Agents and Multi-Agent Systems, 2001,4(1/2): 93-114.
  • 5Soderland S. Learning Information Extraction Rules for Semistructured and Free Text[J]. Machine Learning, 1999, 34(1-3): 233-272.
  • 6Lafferty J, McCallum A, Pereira F. Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data[C]//Proc. of the 18th International Conference on Machine Learning. Williamstown, Australia: [s. n.], 2001.
  • 7Friedrich C M, Revillion T, Hofmann M, et al. Biomedical and Chemical Named Entity Recognition with Conditional Random Fields: The Advantage of Dictionary Features[C]//Proc. of the 2nd International Symposium on Semantic Mining in Biomedicine. Jena, Germany: [s. n.], 2006.
  • 8Wellner B, McCallum A, Peng Fuchun, et al. An Integrated, Conditional Model of Information Extraction and Coreference with Application to Citation Graph Construction[C]//Proc. of the 20th Conference on Uncertainty in Artificial Intelligence. Banff, Canada:[s. n.], 2004.
  • 9Lafferty J,McCallum A,Pereira F.Conditional Random Fields:Probabilistic Models for Segmenting and Labeling Sequence Data.In:Proceedings of the 18th International Conf on machine Learning,2001.282~289
  • 10Sha F,Pereira F.Shallow Parsing with Conditional Random Fields.In:Proceedings of Human Language Technology Conference and North American Chapter of the Association for Computational Linguistics (HLT-NAACL),2003

共引文献78

同被引文献7

引证文献2

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部