期刊文献+

基于总体最小二乘法的图像降噪 被引量:5

Image De-noising Based on Total Least Squares
下载PDF
导出
摘要 来自图像传感器的数字图像会受到各种噪声的干扰,其中主要包括加性噪声、乘性噪声和混合噪声。乘性噪声随信号幅度改变而改变,没有理想的去除方法。为此,运用基于总体最小二乘法的图像估计降噪方法,研究图像块尺寸选取对降噪性能的影响,分析成像系统中去马赛克环节影响噪声传播的内在规律,并通过比较实验给出总体最小二乘法降噪的性能优势。 Images from the digital image sensor are corrupted by all kinds of noise interference, including additive, multiplicative and mixed noise. In particular, the extent of multiplicative noise changes with signal amplitude, there is no better removing method, and Total Least Squares (TLS) estimation is used on image de-noising in this paper. The size of the image patches impacting more greatly on estimation is studied. In addition, de-mosaic impacting on noise propagation in image pipelines is analyzed, and the overall advantages of de-noising using TLS method are comparatively given.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第24期206-207,210,共3页 Computer Engineering
基金 国家自然科学基金资助项目"基于局部平均采样的多维随机场景重构原理与方法"(60872161)
关键词 图像降噪 去马赛克 总体最小二乘法 乘性噪声 image de-noising de-mosaic Total Least Squares(TLS) multiplicative noise
  • 相关文献

参考文献6

  • 1陈莹,纪志成,韩崇昭.基于小波域加权阈值的图像去噪方法[J].计算机工程,2007,33(19):183-185. 被引量:10
  • 2刘晨华,冯象初,张力娜.基于离散小波阈值的偏微分图像去噪[J].计算机工程,2008,34(15):196-198. 被引量:8
  • 3Keigo H, Thomas W. Image Denoising Using Total Least Squares[J]. IEEE Transactions on Image Processing, 2006, 15(9): 2730-2742.
  • 4Groen E An Introduction to Total Least Squares[EB/OL]. (1998-05- 18). http://arxiv.org/abs/math/9805076.
  • 5Dabov K, Foi A, Katkovnik V, et al. Image Denoising with Block-matching and 3D Filtering[C]//Proc. of Int'l Conf. on Algorithms and Systems, Neural Networks, and Machine Learning. San Jose, USA: [s. n.], 2006.
  • 6Chen Jiawen, Paris S, Durand E Real-time Edge-aware Image Processing with the Bilateral Grid[C]//Proc. of ACM SIGGRAPH'07. [S. l.]: ACM Press, 2007.

二级参考文献9

  • 1Chang S G, Yu B, Vetterli M. Adaptive Wavelet Thresholding for Image Denoising and Compression[J]. IEEE Transactions on Image Processing, 2000,9(9):1532-1546.
  • 2Fowler J E. Adaptive Vector Quantization for Efficient Zerotree-based Coding of Video with Nonstationary Statist[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2000,10(8): 1022-1488.
  • 3Sun J X, Gu D B, Chen Y Z, et al. A Multiscale Edge Detection Algorithm Based on Wavelet Domain Vector Hidden Markov Tree Model[J]. Pattern Recognition, 2004,37(7): 1315-1324.
  • 4Rahman S M, Hasan M K. Wavelet-domain Iterative Center Weighted Median Filter for Image Denoising[J]. Signal Processing, 2003,83(5): 1001-1012.
  • 5张宜,陈刚.基于偏微分方程的图像处理[M].北京:高等教育出版社,2004.
  • 6Steidl G, Weickert J, Brox T, et al. On the Equivalence of Soft Wavelet Shrinkage, Total Variation Diffusion, Total Variation Regularization, and SIDEs[J]. SIAM Journal on Numerical Analysis, 2004, 42(2): 686-713.
  • 7Didas S, Weickert J. lntegrodifferential Equations for Continuous Multiscale Wavelet Shrinkage[J]. Inverse Problems and Imaging, 2007, 1(1): 47-62.
  • 8Perona P, Malik J. Scale-space and Edge Detection Using Anisotropic Diffusion[J]. IEEE Trans. on Pattern Anal. Machine lntell., 1990, 12(7): 629-639.
  • 9Catte F, Lions P L, Morel J M, et al. Image Selective Smoothing and Edge Detection by Nonlinear Diffusion[J]. SIAM Journal on Numerical Analysis, 1992, 29(1 ): 182-193.

共引文献16

同被引文献38

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部