期刊文献+

耦合Ginzburg-Landau方程的啁啾类亮灰孤子对传输特性研究

Propagating of Chirped Bright-Gray Soliton Pairs on the Coupled Ginzburg-Landau Equation
下载PDF
导出
摘要 从数值模拟角度出发,将复变系数的耦合Ginzburg-Landau方程作为非均匀光纤放大器的理论模型,对啁啾类亮灰孤子对和亮亮孤子对两组孤波在该理论模型中的传输特性进行详细的研究。结果表明,在考虑了非线性增益(损耗)和增益带宽限制放大效应的情况下,啁啾类亮孤子和灰孤子在合适的色散区可以不受非均匀条件的影响而稳定传输。为了进一步讨论孤子对的稳定性,又讨论了加入振幅微扰和噪声微扰对传输的稳定性。 From the perspective of numerical simulation, based on the Ginzburg-Landau equation with varying coefficients governing the propagation of optical pulses in optical fiber amplifier, we analyze in detail the propagation of soliton pairs such as chirped bright-gray and chirped bright-bright which are propagating in the system. The result shows that considering the nonlinear gain (dissipative) and filtering spectrum limit effect, these chirped soliton pairs can stably propagate in proper dispersion zone without the effect of non-uniform conditions. In order to further investigate the stability of the chirped soliton pairs, we also discuss the propagate stability of soliton pairs with small perturbations such as amplitude perturbation and noise in the system.
出处 《量子光学学报》 CSCD 北大核心 2010年第4期312-318,共7页 Journal of Quantum Optics
基金 量子光学与光量子器件国家重点实验室开放课题
关键词 变系数耦合Ginzburg-Landau方程 啁啾亮灰孤子对 交叉相位调制 coupled generalized Ginzburg-Landau equation with variable coefficients soliton pairs cross phase modulation chirped bright-gray
  • 相关文献

参考文献25

  • 1SCOTT-RUSSELL J. Report on Waves [m]. Proc Roy Soc Edinburgh. 1844, 319-320.
  • 2DMITRY V. SKRYABIN, WILLIAM J. FIRTH. Dynamics of self-trapped beams with phase dislocation in saturable Kerr and quadratic nonlinear media [J]. Phys Rep, 1998, 58(33): 3916-3930.
  • 3KODAMA Y, HASEGAWA A. Amplification and Reshaping of Optical Solitons in Glass Fiber [J]. Opt Lett, 1982, 7: 339-441.
  • 4MOLLENAUER L F, STOLEN R H, GORDON J P. Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers [J]. Phys Rev Lett, 1980, 45(13): 1095-1098.
  • 5ZAKHAROV V E, SHABAT A B. Exact theory of Two-dimensional Self-focusing and One-dimensional Self- modulation of Waves in Nonlinear Media[J]. Sov Phys JETP, 1972, 34(23): 62-69.
  • 6ZAKHAROV V E, SHABAT A B. Interaction Between Solitons in a Stable Medium [J]. Soy Phys JETP, 1972, 37: 823-828.
  • 7BELANGER P A, GAGNON L, PARE C. Solitary Pulses in an Amplified Nonlinear Dispersive Medium [J]. Opt Lett, 1989, 14(17): 943-945.
  • 8GAGNON L, BELANGER P A. Adiabatic Amplification of Optical Solitons [J]. Phys Rev A, 1991, 43(11) : 6187- 6193.
  • 9ZHONGHAO LI, LULI, HUIPING TIAN, et al. Nwe Types of Solitary Wave Solutions for the Higher Order Nonlinear Schrodinger Equation [J]. Phys Rev Lett, 2000, 84( 18): 4096-4099.
  • 10FANG F, XIAO Y. Stability of Chirped Bright and Dark Soliton-like Solutions of the Cubic Complex Ginzburg Landau Equation with Variable Coefficients [J]. Opt Commu, 2006, 268(2): 305-310.

二级参考文献26

  • 1张华峰,王娟芬,李录,贾锁堂,周国生.Generation and propagation of subpicosecond pulse train[J].Chinese Physics B,2007,16(2):449-455. 被引量:1
  • 2AGRAWAL G P. Nonlinear Fiber Optics[ M ]. Academic Press, New York, 1995.
  • 3HASEGAWA A, LODAMA Y. Solitons in Optical Communications [ M]. Oxford University Press, Oxford, 1995.
  • 4HASEGAWA A, TAPPERT F. Transmission of Stationary Nonlinear Optical Pulses in Dispersive Dielectric Fibers. I. Anomalous Dispersion [J]. Appl Phys Lett, 1973, 23(3) : 142-144.
  • 5MOLLENAUER L F, STOLEN R H, GORDON J P. Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers [ J]. Phys Rev Lett, 1980, 45 (13) : 1095-1098.
  • 6BELANGER P A, GAGNON L, PARE C. Solitary Pulses in an Amplified Nonlinear Dispersive Medium [ J ]. Opt Lett, 1989, 14(17) : 943-945.
  • 7GAGNON L, BELANGER P A. Adiabatic Amplification of Optical Solitons [ J]. Phys Rev A, 1991, 43( 11 ) : 6187- 6193.
  • 8HAUS H A, FUJIMOTO J G, IPPEN E P. Structures for Additive Pulse Mode Locking [J]. J Opt Soc Am B, 1991, 8 (10) : 2068-2078.
  • 9AKHMEDIEV N, AFANASJEV V V. Novel Arbitrary-Amplitude Soliton Solutions of the Cubic-Quintic Complex Ginzburg- Landau Equation [ J]. Phys Rev Lett, 1995, 75 (12) : 2320-2323.
  • 10TSOY E N, ANKIEWICZ A, AKHMEDIEV N. Dynamical Models for Dissipative Localized Waves of the Complex Ginzburg-Landau Equation [ J]. Phys Rev E, 2006, 73 : 036621.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部