期刊文献+

基于单运动目标的PTZ检测跟踪系统设计 被引量:2

Design of PTZ detection and tracking system based on single moving object
下载PDF
导出
摘要 针对现有PTZ系统在背景图像动态变化时,对于恶劣环境、低照度和光线不足等容忍度差,误检率高,难以同时达到准确、实时、可靠等跟踪要求的缺点,提出了一种新型PTZ检测跟踪系统.运用自适应背景差分法分割出运动目标;采用改进的OSTU算法获得动态阈值;通过帧间差的结果控制背景累计更新;使用投影法实现运动目标的精确定位.在CamShift算法基础上加入Kalman滤波进行运动预测,实现了对运动目标的PTZ实时跟踪.在VC++环境中,利用图像采集卡和快球进行高速图像采集与云台控制,以行人为运动目标进行测试.结果表明,该系统实现了运动目标的检测、定位和PTZ跟踪;从其统计的检测率和运行时间看,有很好的鲁棒性和实时性. To solve the problem that when the background images change dynamically,the existing PTZ system has a high noise ratio,low tolerence to harsh circumstance,low light intensity,poor light,and difficulty to achieve accurate,real-time,and reliable track request,a new PTZ detection and tracking system was proposed.Moving object was divided by the auto-adapted background method.The improved OSTU algorithm was used to obtain the dynamic threshold value and background accumulation update was completed by frame difference result control.the projection was adopted in order to achieve precise positioning of moving objects,the Kalman filter was added in the CamShift algorithm foundation to complete motion prediction,and the PTZ real-time track of the movement goal was realized.In the VC++environment,the image gathering card and the quick ball were adopted to gather high speed image and carry out the PTZ control,and the designed PTZ examination tracking system was tested with a pedestrian as the movement goal.The results show that the movement goal examination,the localization and the PTZ track are realized by this system.In respect of the running time and detection rate,this system show good robustness and real-time character.
出处 《江苏大学学报(自然科学版)》 EI CAS 北大核心 2010年第6期710-715,共6页 Journal of Jiangsu University:Natural Science Edition
基金 江苏省社发基金资助项目(BS2005046) 镇江市产学研计划项目(zjczcxy200708)
关键词 视频监控 运动目标 背景差分 PTZ跟踪 CAMSHIFT video surveillance moving object background difference PTZ tracking CamShift
  • 相关文献

参考文献10

  • 1祝长锋,肖铁军.基于FPGA的视频图像采集系统的设计[J].计算机工程与设计,2008,29(17):4404-4407. 被引量:30
  • 2Comaniciu D,Ramesh V,Meer P.Kernel-based object tracking[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(5):564-577.
  • 3Tao H,Sawhney H S,Kumar R.Object tracking with Bayesian estimation ofdynamic layer representation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(1):75-89.
  • 4Otsu N.A threshold selection method from gray-level historgrams[J].IEEE Transactions on System Man and Cybernetic,1979,SMC-9(1):62-66.
  • 5李波,姚春莲,李炜,郑锦.利用相邻帧和背景信息的运动对象检测[J].电子学报,2008,36(11):2154-2159. 被引量:14
  • 6田纲,胡瑞敏,王中元.一种基于运动矢量分析的Mean shift目标跟踪算法[J].中国图象图形学报,2010,15(1):85-90. 被引量:19
  • 7Chakraborty D,Dipti P.Real time object tracking based on segmentation and kernel based method[C] //2010 the 5th International Conference on Industrial and Information Systems.2010:426-429.
  • 8Nouar O D,Ali G,Raphael C.Improved object tracking with CamShift algorithm[C] //Proceedings of 2006 IEEE International Conference on Acoustics,Speech,and Signal Processing.Piscataway:IEEE,2006:Ⅱ657-Ⅱ660.
  • 9黄绿娥,李平康,杜秀霞.室内人体运动目标的自动跟踪方法[J].计算机工程,2009,35(9):201-203. 被引量:6
  • 10Reeve J M,Pollock C.Image processing method for the visualization and analysis of iron losses in electrical machines[C] //Proceedings of the 38th IAS Annual Mee-ting.Piscataway:IEEE,2003:1106-1112.

二级参考文献29

  • 1胡瑶荣.基于FPGA的实时视频采集系统[J].电视技术,2005,29(2):81-83. 被引量:22
  • 2韩相军,关永,王万森,王雪立.嵌入式视频采集系统的设计与实现[J].微计算机信息,2006(01Z):26-28. 被引量:24
  • 3朱胜利,朱善安,李旭超.快速运动目标的Mean shift跟踪算法[J].光电工程,2006,33(5):66-70. 被引量:50
  • 4李贵华,夏磊,韦先霜,袁媛,王双保.基于SOPC的VGA显示技术的研究[J].计算机与数字工程,2007,35(2):138-139. 被引量:3
  • 5张亚平,贺占庄.基于FPGA的VGA显示模块设计[J].计算机技术与发展,2007,17(6):242-245. 被引量:30
  • 6Eveland C, Konolige K,and Bolles R. C. Background modeling for segmentation of video-rate stereo sequences[ A ]. In Proceedings IEEE Conf. on Computer Vision and Pattern Recognition[ C] : Santa Barbara, CA. June 1998.266-271.
  • 7Saptharishi M, Bhat K, Diehl C, Oliver C, Savvides M, Soto A, Dolan J and Khosla P. Recent advances in distributed collaboralive surveillance[ A ]. SPIE Proceedings on Unattended Ground Sensor Technologies and Applications (AeroSense 2000) [C]:Orlando, USA.April 2000.4040:199 - 208.
  • 8Wildes R, Wixson L.Detecting salient motion using spatiotemporal filters and optical flow. Proc[A]. DARPA Image Understanding Workshop[C]: Monterey, California. Nov 1998.
  • 9Toyama, J. Krumm, B. Brumitt, and B. Meyers. Wallflower: Principles and practice of background maintenance [ A ]. The Proceedings of the Seventh IEEE International Conference on Computer Vision[C] : Kerkyra, Greece. Sept 1999.255 - 261.
  • 10Wixson L. Detecting salient motion by accumulating directionally-consistent flow [J]. IEEE transactions on pattem analysis and machine intelligence. Aug 2000,22 (8) : 744 - 780.

共引文献65

同被引文献10

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部