期刊文献+

正则与简单系统算法的优化

Optimizations of regular and simple system algorithms
原文传递
导出
摘要 改进王东明提出的正则系统算法(简称RegSer算法)及简单系统算法(简称SimSer算法)的效率。提出新的分解策略:对于任意多项式系统或多项式组[P,Q],首先计算一组良好三角系统,得到[P,Q]的一种零点分解。其次判断每一良好系统是否是正则系统,若不是则将其正则化,即计算一组正则系统,给出该良好系统的零点分解。最后将每一正则系统简单化,即计算一组简单系统,给出该正则系统的零点分解,得到给定多项式系统或多项式组的简单分解。实验结果表明这种分解策略可以提高RegSer和SimSer算法的效率。 Algorithms RegSer and SimSer are improved which are presented by Wang Dongming for computing a finite set of regular/simple systems from a given set/system of multivariate polynomials.A new strategy for triangular decomposition is given.A series of fine triangular systems are computed such that the union of the zero sets of the fine systems is equal to that of .It is checked if each fine triangular system is regular.If some fine triangular system is not,a series of regular systems are computed for it.Simple systems are analogously obtained.The new algorithms are implemented in Maple,the efficiency of the routines is better than RegSer/SimSer which is shown by experimental results.
作者 金萌
出处 《山东大学学报(理学版)》 CAS CSCD 北大核心 2010年第12期106-111,共6页 Journal of Shandong University(Natural Science)
关键词 算法 三角分解 正则系统 简单系统 MAPLE algorithm triangular decomposition regular system simple system Maple
  • 相关文献

参考文献14

  • 1WU W T. Basic principles of mechanical theorem proving in elementary geometries[J].Journal of Systems Science and Mathematical Science, 1986, 2 (3) :221-252.
  • 2WANG D M. An implementation of the characteristic set method in Maple[M]//PFALZGRAF J,WANG D M. Automated Practical Reasoning : Algebraic Approaches. New York: Springer-Verlag, 1995.
  • 3CHOU S C, GAO X S. Ritt-WU's decomposition algorithm and geometry theorem proving [M]//Lecture Notes in Computer Science. Berlin : Springer, 1990.
  • 4LI Y B. Some properties of triangular sets and improvement upon algorithm CharSer[M]//CALMET J, IDA T, WANG D M. Artificial Intelligence and Symbolic Computation. Berlin: Springer, 2006.
  • 5LAZARD D. A new method for solving algebraic systems of positive dimension [J].Discrete Applied Mathematics, 1991,33 (1-3) : 147-160.
  • 6KALKBRENER M. A generalized Euclidean algorithm for computing triangular representations of algebraic varieties [ J ]. Journal of Symbolic Computation, 1993, 15 (2) :143-167.
  • 7YANG L, ZHANG J Z. Search dependency between algebraic equations : an algorithm applied to automated reasoning [ R ]. International Center for Theoretical Physics and International Atomic Energy Agency, Italy: Miramare Trieste, 1991.
  • 8AUBRY P, LAZARD D, MORENO M M. On the theories of triangular sets[J].Journal of Symbolic Computation, 1999, 28 ( 1-2 ) : 105-124.
  • 9HUBERT E, Notes on triangular sets and triangulation-decomposition algorithms I: polynomial systems[M]. Symbolic and Numerical Scientific Computation, Berlin: Springer, 2003.
  • 10LI Y. Applications of the theory of weakly nondegenerate conditions to zero decomposition for polynomial systems[J].Journal of Symbolic Computation, 2004, 38 ( 1 ) :815-832.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部