期刊文献+

一类捕食-食饵系统正周期解的存在性(英文)

Existence of positive periodic solution for a kind of predator-prey systems
下载PDF
导出
摘要 讨论了具有时滞的非自治三种群捕食-食饵扩散系统.利用重合度理论,得到了正周期解存在的一些充分条件. A non-autonomous predator-prey diffusive system of three species with delay was analyzed.By using Gaines and Mawhin's continuation theorem of coincidence degree theory,some sufficient conditions for the existence of positive periodic solution were established for the system.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第6期178-185,198,共9页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金青年基金项目(10801051) 上海市重点学科建设项目(B407)
关键词 捕食-食饵系统 正周期解 重合度 predator-prey system positive periodic solution coincidence degree
  • 相关文献

参考文献9

  • 1XU R, CHEN L S. Persistence and stability of two-species ratio-dependent predator-prey system with time dwlay in a two-patch environment [J]. Comput Math Appl, 2000, 40: 577-588.
  • 2XIAO D M, RUAN S G. Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response [J]. J D E, 2001, 176: 494-510.
  • 3HSU S B, HWANC T W, KUANG Y. Global analysis of the Michaelis-Menten type ratio-dependent predatorprey system [J]. J Math Biol, 2001, 42: 489-506.
  • 4KAR T K, MATSUDA H. Global dynamics and controllability of a harvested prey-predator system with Holling type III functional response [J]. Nonlinear Anal, 2007(1): 59-67.
  • 5WANG M X, PANG P Y H. Global asymptotic stability of positive steady states of a diffusive ratio-dependent prey-predator model [J]. Appl Math Lett- 2008, 21: 1215-1220.
  • 6WANG L L, LI W T. Periodic solutions and permanence for a delayed nonautonomous ratio-dependent predatorprey model with Holling type functional response [J]. J Comput Appl Math, 2004, 162: 341-357.
  • 7ZHANG Z Q, HOU Z T, WANG L. Multiplicity of positive periodc solutions to a generalized delayed predatorprey system with stocking [J]. Nonlinear analysis, 2008, 68: 2608-2622.
  • 8MA Z E. Mathematical Modeling and Studying on Species Ecology [M]. Hefei: Education Press, 1996 (in chinese).
  • 9GAINESE R E, MAWHIN J L. Coincidence Degree and Nonliear Differential Equations [M]. Berin: Springer, 1977.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部